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Abstract—Spectrally and spatially flexible optical networks
(SS-FONs), which combine space division multiplexing (SDM)
with flexible-grid elastic optical network (EON) technologies,
bring additional complexity to network control due to the
handling of a larger number of spatial modes in SDM than in
conventional EONs. To effectively optimize such networks, in
particular, to generate good-quality solutions of low optimality
gaps in reasonable computation times, efficient algorithms are
required. In this work, we focus on the routing, spatial mode, and
spectrum allocation (RSSA) problem in the SS-FONs in which
conversion of spatial modes in switching nodes is allowed. We
propose and evaluate two enhancements in RSSA processing,
namely, algorithm parallelization and application of dedicated
data structures, which are built into a hybrid simulated annealing
with greedy RSSA heuristic algorithm. To assess the quality
of generated RSSA solutions, we develop suitable procedures
for estimating solution lower bounds. The results of numerical
experiments show the effectiveness of proposed techniques in
speeding up the search for good-quality RSSA solutions.

Index Terms—optical networks, space division multiplexing,
routing, space and spectrum allocation, network optimization,
offline planning, parallel algorithm, column generation

I. INTRODUCTION

Space division multiplexing (SDM) is a forthcoming optical
network technology going beyond the capabilities of fixed-
grid wavelength division multiplexing (WDM) and flexible-
grid elastic optical network (EON) systems by enabling par-
allel transmission of several co-propagating spatial modes in
suitably designed optical fibers [1], [2]. SDM, when combined
with multi-carrier (i.e., super-channel, abbreviated as SCh)
and distance-adaptive transmission enabled by EONs, brings
many benefits including enormous increase in transmission
capacity, extended flexibility in resource management due to
the introduction of the spatial domain, as well as potential
cost savings thanks to the sharing of resources and the use
of integrated devices [3]. The feasibility of the spectrally-
spatially flexible optical network (SS-FON) concept has been
demonstrated in [4].

The main concern in optical networking is provisioning of
lightpath connections for transmitted signals. A lightpath is an
optical path established between a pair of source-destination
nodes. In SS-FONs, the lightpaths carrying SChs are routed
through the network over the spatial modes of SDM suitable
links within an appropriately assigned spectrum segment. Hav-
ing a set of traffic demands, the routing of lightpaths requires
a contention-free allocation of spectrum resources on spatial
modes of each link belonging to the routing path of each

connection realizing a demand. It translates into the problem
of routing, spatial mode, and spectrum allocation (RSSA),
which consists of finding lightpath connections, tailored to
the actual width of transmitted signals (i.e., SChs), for end-to
end demands that compete for spectrum and spatial resources
[5]. The RSSA problem is present both in the phase of
offline network planning and during its operation. The former
case is more challenging since it involves the establishment
of lightpath connections for a set of traffic demands, and
such optimization problem is know to be NP-hard [5]. The
latter case concerns mainly the provisioning of lightpaths for
connection requests that arrive and disappear stochastically
(i.e., one-by-one). Even here, the complexity of RSSA may
be high if in-operation planning (i.e., network re-optimization
during its operation) is performed [6].

The handling of a much larger number of spatial modes than
in single-mode EONs dramatically increases the complexity
of both hardware and control functions in SDM networks.
It results in a large set of decision variables in network
optimization, which makes RSSA more complex than the
routing and spectrum allocation (RSA) problem in EONs [7].
Consequently, efficient algorithms for solving the RSSA prob-
lem are required in such networks. In the following, we discuss
related works and present our contributions.

A. Related Works

In network/connection planning, the decision how to allo-
cate the traffic demands is made in an off-line manner, with re-
laxed processing time constraints (when compared to dynamic
connection provisioning). Therefore, more complex and time
consuming optimization methods can be applied for solving
such decision problems. Among them, the most usual one
considered for RSSA-related problems is the mixed-integer
programming (MIP) modeling approach (see e.g., [8]). Also
simple greedy algorithms are quite frequently used (e.g., [9]).
The least popular are meteheuristics, which in most cases
employ a simulated annealing (SA) approach (see e.g., [10]).

The advantage of MIP is that it yields exact (i.e., globally
optimal) solutions. However, its key shortcoming is low scal-
ability, i.e., it cannot provide optimal or even feasible results
in a reasonable time for larger instances of complex problems,
which is the case of most of optimization problems in optical
networks. Contrarily, (meta-)heuristics can effectively generate
feasible solutions to large-scale problems relatively quickly;
however, they do not guarantee their optimality. Indeed, in
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many flexible-grid EON scenarios such methods may face
scalability problems and have difficulties with providing solu-
tions close to optimal ones [11].

One way to speed up the generation of good-quality solu-
tions is to employ algorithm parallelization. The processing
power of CPUs and GPUs in terms of the number of process-
ing cores is continually increasing. It enables the possibility
to run a number of threads, where each thread performs
its own search for optimal solutions in the solution space.
Effective application of GPUs in optimization of EONs has
been demonstrated in [12]. To the best of our knowledge,
algorithm parallelization in SS-FONs has not been studied yet.

Another way to increase the efficiency of optimization
procedures is to use appropriate data structures. A basic repre-
sentation of the allocation status of spectral-spatial resources is
by means of a matrix structure, for instance, a matrix of binary
variables, where each matrix element denotes whether given
frequency slice on the corresponding spatial mode is used
or not. In [13], another matrix representation that indicates
the size of available contiguous spectrum blocks is proposed.
Using this matrix, it is enough the check the value of a single
matrix element so that to know if a demand can be accommo-
dated in a given frequency slot, while a binary representation
involves the iteration over a number of consecutive slices. As
we show in this paper, further improvements can be achieved.

Since (meta-)heuristics do not have in-built optimality guar-
antees, additional procedures aiming at estimation of solution
lower bounds (LBs) can be used for evaluation of solution
quality. In particular, the lower the relative difference (referred
to as optimality gap) between the values of generated feasible
solution and LB the higher quality of the solution. Note that
whenever these values equal (i.e., the optimality gap is 0%),
then it is assured that the solution is (globally) optimal. In [14]
and [15], the LBs are estimated in EON scenarios by solving
an MIP model of the RSA problem in which the spectrum
continuity constraint is relaxed. We have not found any similar
works in the context of SS-FONs.

For more details on resource allocation schemes in SS-
FONs as well as on optimization models and algorithms
considered for the RSSA problem refer to our recent com-
prehensive literature survey presented in [5].

B. Assumptions and Contributions

We focus on an offline network planning problem, which
concerns establishing lightpath connections for a set of traffic
demands competing for spectral-spatial resources with a goal
to optimize their utilization. The considered problem translates
into an RSSA optimization problem in which the width of
spectrum required in the network to allocate the demands is
subject to minimization. As a case study scenario, we assume
an SS-FON in which spectral SChs are carried by lightpaths
over the spatial resources of optical links consisting of single-
mode fiber bundles (SMFB). The lightpaths have assigned
frequency slots that do not change on their routing paths (i.e.,
the spectrum continuity constraint is imposed). However, the
network nodes allow for conversion of spatial modes, i.e., for
lane changes and switching of modes between any input and

output ports. Accordingly, different modes can be assigned to
a lightpath in the links belonging to its routing path (i.e., the
so-called spatial continuity constraint is relaxed). As discussed
in [5], this is one of the most frequently considered scenarios
in the literature in the context of SS-FONs.

Our main contribution is development of an efficient RSSA
algorithm, based on a standard simulated annealing algorithm
combined with a greedy RSSA heuristic, that introduces two
enhancements in SS-FON optimization: parallel processing
and improved data structures. We also develop suitable pro-
cedures for estimation of solution lower bounds, with the
aim to evaluate the quality of generated RSSA solutions. As
the obtained numerical results show, the proposed techniques
significantly speed up the search for optimal RSSA solutions.

The rest of the paper is organized as follows. In Section II,
we formulate the considered RSSA problem. In Section III, we
describe the optimization algorithm. In Section IV, we present
the procedures for estimation of lower bounds. In Section V,
we present and discuss the results of numerical experiments.
Eventually, we conclude the work in Section VI.

II. PROBLEM FORMULATION

We formulate the RSSA problem as an MIP problem using
the link-lightpath (LL) modelling approach [16].

The considered SS-FON is represented by graph G = (V, E)
where V is the set of optical nodes and E is the set of
fiber links. The set of spatial modes available on each link is
denoted asM. On each mode m ∈M, for each network link
e ∈ E , the same bandwidth (i.e., optical frequency spectrum)
is available and it is divided into set S = {s1, s2, . . . , s|S|} of
frequency slices of a fixed width. The set of (traffic) demands
to be realized in the network is denoted by D.

In the LL model, a notion of a lightpath is used. A lightpath
is understood as tuple (p, c), where p is a route and c is
a frequency slot. The route is a path through the network
from the source node to the termination node of a demand
(p ⊆ E), while the frequency slot is a set of contiguous
slices (the property called the spectrum contiguity constraint)
assigned to the lightpath (c ⊆ S). Frequency slot c should
be wide enough to carry the bit-rate of demand d on path p,
if it is supposed to satisfy this demand. Note that the width
of c (i.e., |c|) may differ in the function of the length of
path p. This fact allows us to model the distance-adaptive
transmission, where the best possible modulation format is
selected for each candidate path [11]. Frequency slot c is the
same for each link belonging to the routing path (according
to the spectrum continuity constraint). The set of allowable
lightpaths for demand d ∈ D is denoted as L(d). Finally, let
L be the set of all allowable lightpaths.

The RSSA problem in the considered SS-FON scenario with
the spatial mode conversion simplifies to selecting one of the
allowable lightpaths for each demand in such a way that the
sum of lightpaths utilizing the same slice on the same link
does not exceed the number of available spatial modes (as the
spatial continuity constraint is relaxed). As a consequence,
each lightpath is assigned a binary variable xdl, d ∈ D, l ∈
L(d), where xdl = 1 indicates that lightpath l is actually set-
up and it carries the traffic of demand d. Besides, each binary
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variable yes, e ∈ E , s ∈ S, indicates if there is a used lightpath
allocated on slice s of link e. Eventually, the use of slice s in
the network is indicated by a binary variable ys, s ∈ S.

The corresponding MIP formulation of RSSA is as follows:

minimize z =
∑

s∈S
ys (1a)

[λd]
∑

l∈L(d)
xdl = 1 d ∈ D (1b)

[πes ≥ 0]
∑

l∈L(e,s)
xd(l)l ≤ |M|yes e ∈ E , s ∈ S (1c)∑

e∈E
yes ≤ |E|ys s ∈ S, (1d)

where L(e, s) is the set of lightpaths routed through link e
and slice s, and d(l) is the demand realized by lightpath
l. Optimization objective (1a) minimizes the number of the
slices actually used (equal to the sum of variables ys). Con-
straint (1b) assures that each demand will use exactly one
lightpath from the set of allowable lightpaths. Constraint (1c)
assures that there are no collisions of the assigned resources,
i.e., the sum of lightpaths utilizing the same slice on the same
link does not exceed the number of spatial modes. Finally,
constraint (1d) defines variables ys that indicate whether slice
s is used on at least one link.

Note that the solution of (1) does not provide explicit
information about the spatial modes utilized on consecutive
links of the selected lightpaths. Therefore, to obtain a fea-
sible assignment of modes to the lightpaths, a simple post-
processing procedure presented in [8] can be applied.

Solving model (1) is difficult even in the case of EONs
(i.e., for |M| = 1) [15]. However, the linear relaxation
of (1) (referred to as LP) can be useful in estimation of the
solution lower bounds, for which we develop a suitable column
generation-based procedure in Section IV-B. The procedure
makes use of the dual variables associated with the respective
constraints of LP, which are denoted in (1) by symbols λd and
πes.

III. GENERATING RSSA SOLUTIONS

In the search of optimal solutions for the RSSA problem
formulated in Section II, we apply a similar optimization
approach as in [17], which is a combination of greedy lightpath
allocation (GLA) and simulated annealing (SA) – in this paper,
we denote it as an SA-GLA algorithm. In particular, GLA
processes demands one-by-one, according to a given demand
order, and assigns to them lightpaths in such a way that each
assignment minimizes cost function (1a) (i.e., spectrum usage).
Here, the best routing path from the set of allowable paths
P and vector of spatial modes is selected for each demand,
whereas spectrum is allocated using a first-fit (FF) policy. The
width of allocated frequency slot is calculated assuming the
most spectrally efficient modulation format, but such that its
transmission reach exceeds the path length. The demand order
is being optimized iteratively by applying SA, in a similar
way as in [18]. In particular, at each iteration, SA swaps the
order of just two randomly selected demands and, for such new
order, it calls the GLA procedure. If the new order leads to the
improvement in the objective function, it is considered as the
best one and accepted as the current order in next iterations.

Otherwise, it is accepted as the current one with certain
probability that decreases during SA processing. In the SA-
GLA algorithm, GLA is capable of producing feasible RSSA
solutions quickly, while SA explores the feasible solution
space in the search for (locally) optimal solutions.

The time required to generate optimized RSSA solutions
increases with the number of spatial modes and it can be
considerable. Indeed, as reported in [7], algorithm processing
times might be of the order of tens or hundreds of seconds
even when using a simple greedy heuristic approach in SS-
FONs supporting spectral-spatial SChs. Therefore, to speed-
up the search for optimal RSSA solutions, we propose two
enhancements in the SA-GLA algorithm processing, namely,
parallelization of SA and application of suitable data structures
for efficient search of free spectrum resources in GLA.

A. Parallel Simulated Annealing

In this work, we implement a basic approach for paral-
lelization of our optimization algorithm, in which a number of
parallel threads is run on a multi-core CPU, where each thread
is associated with a logical CPU core, and each thread calls its
own, independent instance of SA-GLA. The instances of SA-
GLA are initialized with different orders of demands that, after
calling the GLA procedure, result in different initial RSSA
solutions. They perform random and uncorrelated swaps of
pairs of demands and explore the solution space in the search
for optimal RSSA solutions without any exchange of infor-
mation about their current best solutions. After meeting the
termination condition, which in our implementation happens
either when the objective value of found solution equals the
solution lower bound (estimated in a pre-processing phase) or
given computation time limit is exceeded, the best solution
found among all the threads is returned.

B. Efficient Spectrum Search

The GLA procedure aims at selecting the best lightpath (i.e.,
such that minimizes cost function (1a)) for each consecutively
processed demand d ∈ D. It checks iteratively all allowable
paths from set P(d) and looks for a free frequency slot, the
same on all links belonging to the path (due to the spectrum
continuity constraint), on any spatial mode in each link of
the path (since the space continuity constraint is relaxed).
GLA applies the FF spectrum allocation policy. Namely, the
allocation status of frequency slices in set S is checked starting
from the lowest indexed slice (i.e., slice s1) until the required
number of free consecutive slices (denoted as N ) that form the
frequency slot is found on any spatial mode in each link of
the path. If found, the frequency slot on the the lowest-indexed
spatial mode (among possible ones) is selected.

The allocation status of spectral-spatial resources in a net-
work link can be represented in a form of matrix A|M|×|S|.
Below, we present four alternative ways in which this data
structure can be defined and processed.
1) Slice Allocation Status (SAS) – a basic approach used,

e.g., in [15], in which A = (ams) ∈ {0, 1}|M|×|S|, where
element ams = 0 indicates that slice s on mode m is
free, and ams = 1 otherwise; see Fig. 1(a). In SAS, the
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frequency slots in the order: (s1, ..., sN ), (s2, ..., sN+1),
(s3, ..., sN+2), etc., are checked until the first one having
all the slices unoccupied for some m ∈M is found. Note
that SAS involves the iteration over a number of slices to
check the availability of a frequency slot.

2) Maximal Free Block (MFB) – a data structure proposed
in [13], in which A = (ams) ∈ N|M|×|S|, where the (non-
negative integer) value of element ams indicates the size of
available contiguous spectrum block beginning from slice s
on mode m; see Fig. 1(b). Similarly as in SAS, the scan of
spectrum is performed for consecutive beginning frequency
slices: s1, s2, s3, ..., however, it is enough to check and
satisfy the condition: ams ≥ N for certain m ∈ M, so
that to find the required frequency slot.

3) Maximal Free-Occupied Block (MFOB) – the approach
that we propose in this paper, in which A = (ams) ∈
Z|M|×|S|, where the positive (integer) value of element
ams indicates the size of available contiguous spectrum
block beginning from slice s on mode m (similarly to
MFB), and its negative value indicates the size of occupied
contiguous spectrum block; see Fig. 1(c). As above, the
search for a free frequency slot starts from beginning
slice s1 but, on the contrary to MFB, if ams1 < N , then
the next one to be checked is at position s1 + |ams1 |, and
so on. In this way, the intermediate slices are skipped from
processing since they obviously does not provide enough
free resources to establish the required frequency slot.

4) MFOB with Aggregation (MFOB-A) – in this extended
version of MFOB, which is suitable for SS-FONs with
spatial mode conversion, auxiliary vectors b and c are
used. Vector b is defined as b = (b1, ..., b|S|) ∈ N|S|,
where bs = max{ams : m ∈ M} and it indicates the
size of the largest free spectrum block beginning from
slice s among all spatial modes. Vector c is defined as
c = (c1, ..., c|S|) ∈ N|S|, where cs = min{|ams| : m ∈
M} and it indicates the size of the smallest spectrum
block (either free or occupied) among all spatial modes
that begins from slice s. The condition that terminates the
search for a free frequency slot is: bs ≥ N , since it is
assured that on at least one spatial mode there is such
slot available that begins from slice s. If this condition
is not met, the next check for free spectrum resources is
performed at slice position s+ cs.

Note that both MFOB and MFOB-A have some processing
overhead due to necessary updates of data structures after each
lightpath allocation. Still, the overall benefits from accelerated
spectrum search considerably outweigh this drawback.

IV. ESTIMATING LOWER BOUNDS

In this section, we develop two alternative methods for
estimating the LBs of the RSSA problem formulated in
Section II, one making use of the relaxed MIP formulation
(referred to as LB-MIP) and the other employing linear
problem relaxation supported with column generation and cut
generation techniques (referred to as LB-CC). The quality of
LBs estimated using these methods is evaluated in Section V.

Fig. 1. Different options for representation of availability of spectral-spatial
resources in a network link.

A. Relaxing MIP Problem (LB-MIP)

One way to obtain an LB is to solve a simplified MIP
problem that does not take the spectrum continuity constraints
into account. Such approach has been shown to be effective in
EONs [14], [15]. The corresponding problem for an SS-FON
with spatial mode conversion can be formulated as follows:

minimize zlb (2a)∑
p∈P(d)

xdp = 1 d ∈ D (2b)∑
m∈M

xdpem = xdp d ∈ D, p ∈ P(d), e ∈ p (2c)∑
d∈D,p∈P(d):e∈p

n(d, p) · xdpem ≤ zlb e ∈ E ,m ∈M, (2d)

where xdp is a binary variable that indicates if path p is used to
realize demand d, xdpem is a binary variable that indicates if
spatial mode m is used to realize demand d in link e belonging
to path p, zlb expresses the (integer) number of slices required
in the most utilized mode in a network link, and n(d, p) is the
number of slices requested by demand d on path p.

B. Solving LP with Column Generation and Cuts (LB-CC)

Solving MIP problem (2) may be difficult as it contains in-
teger variables, which involves the use of a branch-and-bound
algorithm. As an alternative way for estimating LBs, we can
consider solving a linear relaxation of problem (1) (referred
to as LP). Note that even the LP problem may be challenging
if the number of problem variables and constraints is large.
Therefore, to solve LP, we employ a column generation (CG)
approach, which was shown to be effective in EONs [15], [19].

In CG, the LP problem is initiated with a limited set of prob-
lem variables (columns) and additional variables are iteratively
generated and included into LP. Since in large problems most
columns are irrelevant for the problem (their corresponding
variables equal zero in any optimal solution), the processing
complexity can be decreased by excluding these columns from
the formulation. Note that an unalterable (possibly complete)
set of columns is included into the problem when it is solved
by an LP solver using a standard method.

The considered LP problem is initiated with a set of
allowable lightpaths L that represents a feasible RSSA solution
(found using the greedy algorithm described in Section III).
This set is iteratively extended with new lightpaths that are
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provided by CG. A key element of CG is to formulate and
solve a pricing problem (PP). For the RSSA problem in Sec-
tion II, PP is defined as a problem of finding, for each demand
d ∈ D, a new lightpath l for which its so-called reduced cost is
positive (and the largest). The reduced cost of primal variable
xdl is calculated as λd −

∑
e∈E(l)(

∑
s∈S(l) πes), where E(l)

and S(l) denote, respectively, the set of links and the set
of slices used by lightpath l, and λ and π are the vectors
representing an optimal dual solution obtained for the current
LP. When found, variables xdl representing new lightpaths
are included into LP and the resulting LP problem is solved
again (in next iteration). Note that after solving LP, the optimal
values of dual variables λd and πes are obtained directly from
the LP solver. Finally, if no such a lightpath exists for all
demands, the CG procedure terminates. For more details on
CG the reader is referred to [19].

Eventually, similarly as in [15], it is worth to strengthen
the LP with the following valid equalities (cuts): ys = 1,
s ∈ {1, 2, . . . , dzlbe}, where zlb is the optimal objective value
of LP after solving it with CG. Indeed, z is integer in (1) and,
therefore, z ≥ dzlbe holds. After adding cuts, the resulting
LP problem is solved again using CG. This loop (adding cuts
and solving LP with CG) is repeated until zlb is an integer
value. In this case, rounding it up and setting ys = 1 for
s ∈ {1, 2, . . . , dzlbe} is worthless since it does not have impact
on the solution of LP, and the estimation of LB is terminated.

V. NUMERICAL RESULTS

In this section, we evaluate the proposed RSSA optimization
procedures in a European network of 28 nodes and 82 links
(EURO28) (shown in the bottom-right corner of Fig. 2). We
assume the flexgrid of 12.5 GHz granularity and the number
of spatial modes M ∈ {7, 12}. The transmission is realized
using spectral SChs and polarization division multiplexing.
A spectral SCh consists of a number of optical carriers (OCs),
each OC occupying 37.5 GHz, and a guard-band of 12.5 GHz.
For OCs, we consider four modulation formats: BPSK, QPSK,
8QAM, and 16QAM, of the transmission reach 6300, 3500,
1200, and 600 km [20], and the carried bit-rate 50, 100, 150,
and 200 Gbit/s per OC, respectively. We consider that the
OCs forming an SCh use the same modulation format. To
generate routing paths, we apply a k-shortest path algorithm
(assuming physical path lengths) with k = 10 paths per
demand, and we exclude the paths of length exceeding the
maximum transmission reach. Traffic demands have randomly
generated end nodes and bit-rates between 50 Gbit/s and 1
Tbit/s, with 50 Gbit/s granularity. All the results are obtained
and averaged over 10 randomly generated demand sets.

Numerical experiments are performed on a dual-processor
2.2 GHz 10-core Xeon-class machine (40 logical cores in total)
with 128 GB RAM. The performance of SA depends on its
parameters, which are: cooling rate and initial temperature
coefficient. We apply the same values of these parameters for
the studied EON28 network as in [17], namely, the cooling
rate is 0.99 and the initial temperature coefficient is 0.05.

We begin with evaluating the LB estimation procedures
presented in Section IV, i.e., LB-MIP (with 1-hour run-time

TABLE I
COMPARISON OF ESTIMATED LOWER BOUNDS; T IN SECONDS.

LB-MIP LB-CC LP

|M| |D| zlb T zlb T zlb T

7 200 58.2 1137 58.4 64 23.9 1
400 104.2 3600 104.2 482 49.0 3.6

12 200 57.4 40.6 57.4 7.2 14.0 0.6
400 61.5 2911 62.5 141 28.6 1.3

Fig. 2. Comparison of spectrum search procedures in serial SA-GLA with
300 sec. run-time limit, and relative speedup of MFOB-A (vs other options).

limit) and LB-CC. In addition, we include the results of
LP relaxation (solved using CG without cuts). To solve the
MIP and LP models, we use CPLEX v.12.6.3 [21] (run in a
parallel mode and with default settings). In Table I, we show
the obtained LB values (zlb) and processing times (T ) for
|M| ∈ {7, 12} and |D| ∈ {200, 400}. We can see that LB-CC
offers the best performance in terms of zlb (the highest values)
and is much faster than LB-MIP. Solving LP (using CG) can
be very fast, however, the obtained LBs are of very low quality
and it holds also for other, not reported here values of |M|.
Therefore, for the following analysis of optimality gaps of the
SA-GLA heuristic, we select LB-CC.

Next, we compare the spectrum search procedures pre-
sented in Section III run with a serial version of SA-GLA
(i.e., 1 thread) with a 300 sec. run-time limit (the short
time is due to the large number of executed experiments).
In Fig. 2, we can see that the lowest optimality gap, defined
as a relative difference between the objective values of LB
and heuristic solutions, is obtained with MFOB-A, and the
difference between MFOB-A and SAS is of some percents.
The optimality gaps increase with the number of demands
(|D|) and spatial modes (|M|), which is a result of the
complexity of solving larger problem instances. In Fig. 2,
we show also a relative speedup of MFOB-A with respect to
other spectrum-search options, defined as a ratio of the run-
times of a single iteration of the SA-GLA using MFOB-A and
the SA-GLA using other option. We can see the the highest
speedup of MFOB-A is with respect to SAS (up to 18 times
for |M| = 7 and |D| = 500), and it increases with |D|, but
decreases with |M|. This gain results from the much faster
scanning of spectrum in MFOB-A than in other approaches
since MFOB-A skips from processing the entire blocks of
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TABLE II
PERFORMANCE OF THE SA-GLA HEURISTIC UNDER DIFFERENT

ALGORITHM SETTINGS FOR |M| = 7 AND |D| ∈ {200, 300, 400}.

|D| = 200 |D| = 300 |D| = 400

# Search Threads Run-time z ∆ z ∆ z ∆

(0) (initial RSSA solution) 89.9 34.4% 114.7 31.5% 140.9 25.6%

(1) MFOB-A 1 1000 sec. 59.1 1.2% 80.7 3.3% 108 3.5%
(2) MFOB-A 40 1000 sec. 58.8 0.7% 79.7 2.0% 107.2 2.8%

(3) SAS 1 1 hour 59.4 1.8% 81.5 4.2% 109.2 4.6%
(4) MFOB-A 40 1 hour 58.8 0.7% 79.2 1.4% 106.4 2.1%

spectrum that are not suitable for allocation of a demand (as
explained in Section III in more details). Consequently, much
more iterations of SA-GLA can be performed within the given
300 sec. run-time limit and, thus, better performance results
are achieved with MFOB-A than with other approaches.

In Table II, we present performance results of SA-GLA,
namely, the objective value of best solution (z) and its optimal-
ity gap (∆), obtained for |M| = 7 and |D| ∈ {200, 300, 400}.
Here, our main goal is to compare different aspects of the SA-
GLA algorithm and, therefore, the presented results have been
obtained for different appropriately selected algorithm settings
(indexed from (1) to (4)). For reference, we also include
adequate values of initial solutions that initialize the SA-GLA
algorithm (under index (0)). First, when comparing (0) with
(1)-(4), we can see that SA-GLA is capable of significantly
improving the initial solutions. Next, a direct comparison
of settings (1) and (2), in which the same spectrum search
procedure is applied (i.e, MFOB-A) but different number
of threads is assumed, shows that application of parallel
processing improves the SA-GLA performance. For instance,
the difference in ∆ is 1.3% for |M| = 300 if SA-GLA is run
with 40 threads instead of 1. Note that the efficiency of parallel
processing can be further increased if more sophisticated
techniques are applied (e.g., such as exchanging information
between threads). Settings (3) and (4) represent, respectively, a
baseline version of SA-GLA (run with the SAS approach and
1 thread) and the fully enhanced version of the algorithm. The
comparison of (3) and (4) shows that the overall improvement
in ∆ that comes from both the use of MFOB-A and algorithm
parallelization is between about 1%− 3% (depending on |D|)
after 1 hour of SA-GLA performance. Eventually, a compar-
ison of settings (2) and (4), which differ in the considered
run-time limit (i.e., 1000 seconds vs 1 hour), shows that the
increase of the algorithm processing time may allow SA-GLA
to generate better quality solutions.

VI. CONCLUSIONS

We have focused on optimization of RSSA in SS-FONs
with spatial mode conversion. We have proposed an efficient
optimization algorithm as well as effective procedures for esti-
mating solution lower bounds. We have shown that application
of parallel processing and use of dedicated data structures can
significantly speed up the search for optimal RSSA solutions.
The quality of obtained solutions is high (the optimality gaps
reach about 1%−2% and below), which is a good result taking
into account the size of optimized network instances (in terms

of both the number of spatial modes, demands, and network
dimension). In future works, we will aim at improving the
efficiency of parallel algorithm and will address other SS-FON
scenarios including the network without lane changes.
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