
On Learning Bandwidth Allocation Models for
Time-Varying Traffic in Flexible Optical Networks

Tania Panayiotou1, Konstantinos Manousakis1, Sotirios P. Chatzis2, Georgios Ellinas1

1 KIOS Research and Innovation Center of Excellence,
Department of Electrical and Computer Engineering, University of Cyprus

2 Department of Electrical Engineering, Computer Engineering and Informatics,
Cyprus University of Technology,

Abstract—We examine the problem of bandwidth allocation
(BA) on flexible optical networks in the presence of traffic
demand uncertainty. We assume that the daily traffic demand is
given in the form of distributions describing the traffic demand
fluctuations within given time intervals. We wish to find a pre-
dictive BA (PBA) model that infers from these distributions the
bandwidth that best fits the future traffic demand fluctuations.
The problem is formulated as a Partially Observable Markov
Decision Process and is solved by means of Dynamic Program-
ming. The PBA model is compared to a number of benchmark
BA models that naturally arise after the assumption of traffic
demand uncertainty. For comparing all the BA models developed,
a conventional routing and spectrum allocation heuristic is used
adhering each time to the BA model followed. We show that
for a network operating at its capacity crunch, the PBA model
significantly outperforms the rest on the number of blocked
connections and unserved bandwidth. Most importantly, the PBA
model can be autonomously adapted upon significant traffic
demand variations by continuously training the model as real-
time traffic information arrives into the network.

I. INTRODUCTION

With the emergence of new types of applications and
services, the Internet traffic is exponentially growing [1]. Next
generation optical networks are expected to support both the
ever increasing traffic demand and the increased uncertainty in
predicting the sources of this traffic. Over the last few years,
and as the currently deployed optical networks are nearing a
capacity crunch, they have undergone significant changes.

Flexible optical networks are considered today as a promis-
ing solution for coping with the increasing demand, due to
their capability of efficiently utilizing the available spectrum
resources [2]. Flexible optical networks are based on band-
width variable transceivers (BVTs), a flexible grid, and net-
work nodes that can adapt to the actual traffic needs [2]. In this
type of networks, for establishing a connection, the Routing
and Spectrum Assignment (RSA) problem must be solved. The
routing (R) problem deals with finding a route for a source
and destination pair. The spectrum allocation (SA) problem
deals with allocating spectral resources to the routing path (the
spectrum slots are occupied symmetrically around the nominal
central frequency of the channel). The allocated spectrum must
meet the slot continuity and contiguity constraints [3], subject
to the constraint of no frequency overlap. Once a connection
is established the spectrum width can be dynamically adapted
(if feasible) in response to bandwidth variations. The RSA

problem for time-varying traffic has been studied in [4]-[7]
with the aim of best fitting the bandwidth requirements upon
demand variations. A survey regarding the methods developed
for the R problem can be found in [8], whereas regarding the
SA problem, a number of SA policies have been developed
that are in general categorized into fixed, semi-elastic, and
elastic [5], [8].

In the fixed SA policies [4], [5] the allocated spectrum and
the central frequency remain static for the entire lifetime of
a connection. These policies lead to a sub-optimal use of the
available resources as much of the allocated spectrum is most
of the time wasted. In the semi-elastic SA policies [4], [5] the
central frequency remains static but the allocated spectrum
width can be expanded/reduced according to the actual band-
width demand. The main difference with the fixed SA policies
is that the unutilized slots can now be used for subsequent
connection requests providing higher flexibility and better
resource utilization. In the elastic SA policies [4]-[7], [9]
both the allocated central frequency and the spectrum width
can change. The spectrum width can be expanded/reduced
according to the actual bandwidth demand and the central
frequency can be shifted [5], [6], [9], [10]. The elastic SA
policies offer better resource utilization but require the highest
computational complexity and complex algorithms in the Path
Computation Element for minimizing traffic interruptions if a
reallocation policy is followed [5], [8]. Further, control plane
extensions are still required for allowing dynamically adjusting
both the allocated spectrum and the central frequency.

Most SA policies are based on daily Internet traffic patterns
that can be known a priori due to the periodic behavior of
Internet traffic [5]-[7], [9]. The traffic patterns include infor-
mation regarding the estimated peak rate of each connection
request for each time interval (usually 24-hour patterns). The
estimated peak rates are used by the SA policy followed in
order to allocate just enough bandwidth for each connection.
For handling a situation where more bandwidth is eventually
requested than the estimated one, the estimated peak rate is
multiplied by a certain oversubscription ratio [4].

Motivated by the fact that the Internet traffic demand has
been shown to follow the log-normal distribution [11], in this
work, instead of assuming that the daily traffic patterns are
given in the form of estimated peak rates, we assume that
they are given in the form of distributions describing the traffic
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demand uncertainty (the mean and variance of the log-normal
distribution are given). In this work, the assumption throughout
is that the distribution describes the aggregate traffic resulting
from multiple users. We wish to infer from these distributions
a predictive bandwidth allocation (PBA) model that best fits
the future bandwidth demands. In particular, we wish to
find a bandwidth allocation (BA) model that is capable of
predicting the number of spectrum slots that will best fit
the traffic demand fluctuations of the next time interval. We
have formulated the problem as a Partially Observable Markov
Decision Process (POMDP) as POMDPs have been proven to
be very effective for addressing planning domain problems
with uncertainty [12]-[14]. For finding the PBA model, the
POMDP is solved by means of dynamic programming. Note
that the approach used for training the PBA model does not
need to know the underlying traffic demand distributions. It
can utilize real-time information for continuously adjusting
the model upon variations on the traffic demand. The train-
ing procedure can be performed continuously offline, given
that enough traffic information is available. Large amounts
of traffic information can be easily collected by monitoring
the traffic demand fluctuations within short time intervals.
Nevertheless, given the fact that we do not have available real
traffic information, in this work, we made the assumption that
the traffic demand distributions are known. These distributions
are used as traffic demand data generators for training and
evaluating the effectiveness of the proposed PBA model.

We assume a network that is elastically reconfigured at the
beginning of each time interval (24 hourly intervals). For each
network reconfiguration, an RSA heuristic is executed offline.
The SA must adhere to the BA model followed. A connection
is blocked if a feasible route and SA cannot be found. Between
network reconfigurations, the bandwidth for the established
connections is semi-elastically expanded/reduced according to
the fluctuations of the actual traffic demand. If the allocated
bandwidth is higher or equal to the requested one, then the
connection bandwidth is semi-elastically expanded/reduced or
it remains unchanged. If the allocated bandwidth is less than
the requested one, then some of the requested bandwidth
remains unserved.

The PBA model is evaluated and compared to a number of
benchmark BA models that naturally arise from the assumption
of traffic demand uncertainty. Specifically, the PBA is com-
pared to the Highest BA (HBA), to the Maximum Probability
BA (MPBA), and to the Expected BA (EBA) models on a
network that is operating at its capacity crunch.We show that
the PBA model significantly outperforms the rest regarding
the unserved bandwidth.

II. BANDWIDTH ALLOCATION MODELS

We assume that the traffic demand is log-normally dis-
tributed [11] and that traffic demand information is available
for a 24-hour period and for N source-destination pairs
(connections). In particular, we assume that each connection
is described by a set of traffic demand distributions, with each
distribution describing the traffic demand fluctuations within

a single time interval. In general, the log-normal distribution
is asymmetrically distributed around its mean value and is
suitable for describing data with heavy-tails and skewness.

The traffic demand fluctuations for each time interval
{t}24t=1 and for each connection {n}Nn=1 are described by
Ztn ∼ LN(µtn, σ

2
tn). We assume that ztn ∈ (0, B) and

that B < B′, where ztn ∈ Ztn, B is equal to the feasible
rate of the BVTs, and B′ is equal to the total link capacity
(all network links occupy B′ spectrum slots). For making
the learning procedure of the PBA model computationally
tractable, we have discretized the distributions according to
specific rate intervals. Specifically, we have divided B into
a intervals in such a way that the ath interval is given by
Ba = [(a− 1)k, ak], where (a− 1)k is the minimum rate of
Ba, ak is the maximum rate of Ba, and a = 1, 2, .., Bk . Then
we evaluated for each time interval t, for each connection n,
and for each Ba, the probabilities patn = P [ztn ∈ Ba], where
patn is the probability of connection n requesting at t a number
of spectrum slots between (a − 1)k and ak. Since the traffic
demand distributions are in this work randomly generated and
may not be perfectly fitted to the tunability capabilities of the
BVTs assumed, we have also evaluated p0tn = P [ztn > B] to
handle the distributions that generate rates above the feasible
rate of the BVTs. By doing so, we managed to generate a valid
discrete probability distribution. Without loss of generality, we
assume that B0 = 0 with probability p0tn.

For a network that is already configured and operating at
t′, a BA model indicates for each connection n the bandwidth
allocation action a that must be taken for reconfiguring the
network at the next time interval t. If the BA model indicates
an action a for the connection n, then the number of spectrum
slots ∆tn that must be allocated to connection n are given
by ∆tn = max{Ba}. Note that the actions are actually the
indices to the Ba intervals, and thus, for simplicity, the same
notation is used for both the actions and the indices of the
rate intervals. We assume that a network reconfiguration takes
place at the beginning of each time interval t and is computed
offline during the previous time interval t′. We now proceed
with the description of the BA models developed.
1) Highest BA (HBA) Model: Indicates for each connection n
and each upcoming time interval t, the BA action a that corre-
sponds to the highest possible bandwidth demand. Specifically,
∆tn = argmaxa|pa

tn>0{max{Ba}|a = 0, 1, .., k}.
2) Maximum Probability BA (MPBA) Model: Indicates for
each connection n and each upcoming time interval t, the BA
action a that corresponds to the bandwidth interval with the
maximum probability. Specifically, ∆tn = argmaxa{patn|a =
0, 1, .., k}.
3) Expected BA (EBA) Model: Indicates for each connection
n and each upcoming time interval t, the BA action a that cor-
responds to the bandwidth interval in which the expected band-
width of the distribution of interest belongs. Specifically, given
that the expected bandwidth is E[∆tn] =

∑k
i=0 max{Bi}pitn,

then ∆tn = max{Ba}, where E[∆tn] ∈ Ba.
4) Predictive BA (PBA) Model: Our stochastic BA problem is
formulated as a Partially Observable Markov Decision Process
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(POMDP). POMDPs generalize Markov Decision Processes
(MDPs) that are usually used in heuristic search and planning
for accommodating stochastic actions and full state observ-
ability [15]. POMDPs differ from MDPs in that the states are
not observable but are estimated from observations.

Formally, a POMDP is defined as a tuple
{S,A, T,O,Ω, b0, R, γ}, where S is the set of states.
A is the set of actions, T (s′|s, a) defines the distribution over
next state s′ to which the agent may transition after taking
action a from state s, O is the set of observations, Ω(o|s, a)
is a distribution over observations o that may occur as a result
of taking action a and entering state s, R(s, a) is the reward
function that specifies the immediate reward for taking action
a at state s, γ ∈ [0, 1) is the discount factor that weighs
the importance of current and future rewards, and b0 is the
vector of initial state distribution such that b0(s) denotes the
probability of starting at state s.

In general, at each time step, the environment is at some
state s ∈ S. The agent takes an action a ∈ A, and the
environment transitions to state s′ with probability distribution
T (s′|s, a). At the same time, the agent receives an observation
o ∈ O which is associated with the latent (unobservable)
state s′ according to some conditional likelihood function
Ω(o|s′, a). Finally, the agent receives a reward equal to
R(s, a). Then the process repeats. The goal is for the agent to
choose actions at each time step t that maximize its expected
future discounted reward E[

∑∞
t=0 γ

tR(st, at)].
In our BA problem, let us consider that the correlation

between optimal network configuration and traffic demand
patterns is not static, but may fluctuate on the grounds of
longer term temporal dynamics. In that case, we must be
capable of inferring these changes and adapting our policies
accordingly. The essence of POMDPs addresses this con-
sideration; POMDPs effect this goal by postulating that, at
each time point, the modeled system has some latent state,
s. Depending on the latent state, s, the same traffic demand
requires a different policy of network reconfiguration, due to
the different longer-term trends/dynamics that this latent state
information encapsulates.

On this basis, for formulating the POMDP according to our
BA problem, S,A, T,O,Ω, b0 and R are now defined, for each
connection n in the network, as follows:
• S = {s|s = 0, 1, ..., k} with each state s representing the
number of spectrum slots assigned to connection n.
• A = {a|a = 0, 1, ..., k} with each action a representing the
interval Ba, and hence the number of spectrum slots ∆∗ that
must be allocated to n.
• T (s′|s, a) defines the probability of transitioning to state s′

if action a is taken at s. Note that for each connection n we
assume that a spectrum size transition is always possible (for
simplicity a network with infinite capacity is assumed - the
network capacity limitations are considered during the RSA
algorithm in which the trained BA models are incorporated).
• O = {o|o = 0, 1, ..., k} with each observation o representing
the interval Bo in which the requested (observed) rate belongs.
• Ωn(o|s, a) = potn is the observation distribution of connec-

tion n. The observation distribution generates at each time step
t the true bandwidth demand of n.
• R(s, a) is the reward function that specifies the immediate
reward for taking action a at state s, and cannot be known
a priori. The immediate reward for each state-action pair
depends on what the agent observes at s′ after action a is taken
at s. On this basis, it is evaluated on the fly during the learning
and exploration procedure of the POMDP (see Algorithm 1).
For evaluating R(s, a), we define instead a reward function
r(s′, a, o). Each element of r(s′, a, o) specifies the reward
received when o is observed at s′, after action a is taken at s.
Specifically,

r(s′, a, o) =

{
−C, if a < o
exp[M(k − a+ o)], otherwise (1)

Equation 1 indicates that if the requested demand (o) is
higher than the allocated bandwidth (a), then the reward func-
tion r returns the constant negative reward −C, penalizing the
action taken at s. On the other hand, if the requested demand
(o) is lower than the allocated bandwidth (a), then a positive
reward is received. According to Eq. 1 the positive reward
is calculated as exp[M(k − o + a)], where M is a constant
number, and returns a greater reward when the requested
bandwidth is closer to the allocated one. Note that the reward is
increasing exponentially as the requested bandwidth becomes
closer to the allocated one, in order to allow the PBA model
to learn the importance of allocating a bandwidth that is near
the requested one. Equivalently, the PBA model is guided
to avoid allocating at each time interval the highest possible
bandwidth in an attempt to ensure a positive reward. By doing
so, we aim at reducing both the unserved bandwidth as well
as the unutilized allocated bandwidth (PBA is guided to strike
a balance between the unserved bandwidth and the allocated
one). Note that b0 is set to b0(s) = 1

k ∀s indicating that
connection n can be initialized at any possible state s.

Commonly, POMDPs are solved by formulating them as
completely observable MDPs over the belief states (posterior
probability) of the agent [16]. Specifically, in POMDPs, as
the true state is not observable, the agent must choose its
actions based only on past actions and observations. Normally,
the best action to take at time step t depends on the entire
history of actions and observations that the agent has taken so
far. However, the probability distribution over current states,
known as the belief, is a sufficient statistic for a history of
actions and observations [13]. In discrete state spaces, the
belief state at step t + 1 can be computed from the previous
belief, bt, the last action a, and observation o, by the following
application of Bayes rule [13]

ba,ot+1(s) = Ω(o|s, a)
∑
s′∈S

T (s|s′, a)bt(s
′)/Pr(o|b, a), (2)

where Pr(o|b, a) =
∑

s′∈S Ω(o|s′, a)
∑

s∈S T (s′|s, a)bt(s).
The Bellman equation for the resulting belief MDP is [13]:

V ∗t (b) = max
a∈A

Qt(b, a), (3)
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Qt(b, a) = R(b, a) + γ
∑
o∈O

Pr(o|b, a)Vt(b
a,o), (4)

where the value function V (b) is the expected discounted
reward that an agent will receive if its current belief is
b, Q(b, a) is the value of taking action a at belief b, and
R(b, a) is the expected reward given by

∑
s∈S R(s, a)b(s).

As the exact solution of the Bellman equation (Eq. (3)) is
intractable for large spaces [17], in this work, the Real-
Time Dynamic Programming-Bel (RTDP-Bel) [18] heuristic
algorithm is used for finding an optimal policy. In RTDP-Bel
a greedy policy πV is used for finding an optimal policy, where
πV (b) = argmaxa∈AQt(b, a).

The RTDP-Bel is an asynchronous value iteration algorithm
that converges to the optimal value function and policy over
the relevant belief states without having to consider all the
belief states in the problem. For achieving this, the RTDP-
Bel uses an admissible heuristic function or lower bound h as
the initial value function. Provided with such a lower bound,
RTDP-Bel selects for update the belief over the states that
are reachable from the initial state b0 through the greedy
policy πV in a way that interleaves simulation and updates. For
the implementation of the RTDP-Bel, the estimates V (b) are
stored in a hash table that initially contains only the heuristic
value of the initial state, b0. Then, when the value of a belief
ba,o that is not in the table is needed, a new entry for ba,o

with value V (ba,o) = h(ba,o) is allocated. These entries are
updated following Eq. (3) when a move from s is performed.
The RTDP-Bel algorithm is described analytically in [18].

In this work, the state-of-the-art RTDP-Bel algorithm is
slightly modified to fit our problem formulation, incorporating
the reward function defined in Eq. 1. The modified RTDP-
Bel algorithm is described in Algorithm 1. Algorithm 1 is
independently executed for each connection n in the network,
and hence for each connection a different PBA model is
evaluated. In Algorithm 1, an episode is defined as the
sequence of actions and observations received for all the time
intervals {t}24t=0. According to Algorithm 1, in each time
interval t a single observation is sampled from Ωn(o|s, a).
It is true, however, that within t a number of traffic demand
fluctuations may occur. The algorithm will eventually obtain
enough observations and will converge to an optimal PBA
through the iteration over a large number of episodes. In
Algorithm 1 the target belief is at t = 24.

III. ROUTING AND SPECTRUM ALLOCATION

The RSA heuristic is executed for each time interval {t}24t=1

and for each connection {n}Nn=1, during the previous time
interval t′. Network reconfiguration takes place at the begin-
ning of each time interval t. For each t, the RSA is solved
without considering the network configuration at t′ (complete
connection reallocation is allowed). Specifically, for each t,
the RSA finds a route and a spectrum allocation for each
connection n, starting with the connection, n′, requesting
the maximum number of slots ∆tn′ . For the R problem,
the k-shortest path algorithm is used [19], while for the SA
problem the first-fit algorithm is used, subject to the spectrum

continuity, spectrum contiguity, and no frequency overlap
constraints [3]. An ILP formulation was also developed for
BA model evaluation, demonstrating that the proposed PBA
model outperforms the benchmark BA models (omitted due to
space limitations).

Algorithm 1 Modified RTDP-Bel alg. for each connection n

1: Start with b = b0.
2: Sample state s from its probability distribution b(s).
3: Evaluate each action a at belief state b as:

Q(b, a) = R(b, a) + γ
∑
o∈O

Pr(o|b, a)V (ba,o),

initializing V (ba,o) to h(ba,o) if ba,o is not in the hash.
4: Select action a that maximizes Q(b, a).
5: Update V (b) to Q(b, a).
6: Sample next state s′ from its probability distribution T (s′|s, a).
7: Sample observation o from its probability distribution Ωn(o|s′, a)
8: Sample reward r from the reward function r(s′, a, o)
9: Set R(s, a) equal to r(s′, a, o).

10: Compute ba,o using (2).
11: Finish if ba,o is target belief, else b := ba,o, s := s′, and go to 3.

IV. PERFORMANCE EVALUATION

The performance of the BA models was evaluated and
compared on the generic Deutsche Telekom (DT) network [4].
Each spectral slot in the network was set at 12.5GHz, with
each fiber link utilizing B′ = 180 slots. The feasible range
of the BVTs was set to B = 100 slots. Note that this link
capacity was chosen for reducing the computational time in
our MATLAB machine with a CPU @2.60GHz and 8GB
RAM. Bandwidth B was divided into k = 10 rate intervals
{Ba}ka=0. Hence, each BA model can choose at each t and for
each n amongst 11 spectrum allocation actions. Each action a
indicates that ∆tn = a × k spectrum slots must be allocated
at time interval t for connection n. Twenty-four time intervals
were assumed.

In total 14 connection were considered, with seven of the
connections following the log-normal distribution and the rest
set to be static. The static connections were added as a simple
approach for bringing the network at its capacity crunch and
enabling the performance evaluation of the BA models on such
a network. Regarding the stochastic connections, their traffic
demand parameters, for each connection n and time interval
t, are given by the (µtn, σ

2
tn) parameters of the log-normal

distribution. The σ2 parameters were uniformly generated in
the range [0, 1] and the µ parameters were uniformly generated
in the range [0, 5]. Note that for simplicity, and without
loss of generality, we did not consider that the mean rate
value (µ) between sequential (in time) traffic distributions
increases/decreases smoothly. Such a consideration would not
affect the learning procedure or the efficiency of the PBA
model. Regarding the static connections, their bandwidth de-
mand ∆∗ was set to be constant for all the time intervals. ∆∗
values were randomly generated in the range [20, 60].

A. Training the PBA Model
For training the PBA model, the discount factor γ was set

to 0.95 (typical value for POMDP training). Constants C and
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M of the reward function (Eq. 1) were set to 10000 and
10, respectively. Note that a complete examination of how
γ,C, and M values affect the trained PBA model could not
be performed in this paper due to space limitations, and it
is left for future work. A unique PBA model was trained
for each one of the seven stochastic connections. For each
PBA model, RTDB-Bel was iterated over 6000 episodes of
learning, which interleaved simulation and model updates (the
model was updated after every 20 simulated episodes). After
each model update, 200 test episodes were generated with the
model fixed, for evaluating the model’s efficiency. For each
test episode, the model returned the total reward, the total
allocated bandwidth, and the total number of negative rewards
received. These values were averaged over all 200 episodes.

Figures 1-3 illustrate how the average reward, the average
allocated bandwidth, and the average number of negative
rewards evolve over the training time of the PBA model.
Training time is given in hours and corresponds to the time
required for training and testing the model (for the 6000
episodes). A model update is indicated with a circle in Figs. 1-
3 (250 total model updates). Figures 1-3 correspond to the
PBA model of connection n = 1 (similar figures were obtained
for all the other connections but are omitted due to space
limitations). Figure 1 shows that the PBA model performs
better as the training procedure evolves. The average reward
increases with the number of model updates (training time) as
the agent learns to take better bandwidth allocation decisions.
Fewer negative rewards are received (Fig. 3) and the allocated
bandwidth converges near the requested one (Fig. 2).

Fig. 1: Average reward over training time.

Fig. 2: Average allocated bandwidth over training time.

Fig. 3: Average negative rewards over training time.

In our simulations, each connection was trained for the
same number of episodes and the last PBA model obtained
was utilized for the network reconfigurations (during the RSA
heuristic). Each model required up to 6 hours of training and
testing. An action was generated within milliseconds from
each model. Note that the models for each connection can be
trained in parallel and independently from each other, and thus
the number of time-varying connections does not affect the
scalability of the PBA model. Further, the training procedure
can be continuously performed for automatically adjusting
the models upon significant variations on the traffic demand
distributions; an important capability of the proposed method,
given that the future traffic demand is expected to increase in
uncertain ways (we cannot know the magnitude of a future
traffic demand or the sources of this traffic).

Table I demonstrates how each trained PBA model performs
against HBA, MPBA, and EBA. For each BA model we
generated 200 episodes of actions and observations assuming
a network with infinite capacity. The allocated bandwidth and
the number of times an observation was greater than the action
taken (negative reward) were averaged over these episodes.
Note that a single observation was drawn for each action taken.
Table I shows both the average allocated bandwidth and the
average number of negative rewards.

TABLE I: BA Model Comparison
Average Allocated Bandwidth Average No. of Negative Rewards

n HBA MPBA EBA PBA HBA MPBA EBA PBA
1 1490 560 690 868 0 4.77 3.3 3.1
2 1730 500 470 1171 0 7.2 4.2 2.1
3 1310 370 480 950 0 3.48 2.5 0.9
4 1400 370 580 750 0 6 3.3 4.5
5 1690 350 488 665 0 6.13 4 3.5
6 1420 320 520 830 0 6.7 4.3 4.1
7 1700 380 480 667 0 6.1 4.1 3.4

According to Table I, PBA tends to allocate fewer slots
compared to HPBA and more slots compared to MPBA and
EBA. Hence, PBA increases the negative rewards received
compared to HBA that never receives a negative reward.
MPBA and EBA receive on the average more negative rewards
than PBA as they tend to allocate fewer slots than PBA. This
is a consequence of the reward function (Eq. 1) defined for
PBA training that aims at allocating at each time interval a
bandwidth that is close to the requested one.
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B. Network Performance Evaluation

The RSA algorithm was solved on the DT network for each
BA model and each time interval t. For each t, an action was
generated for each connection n and RSA was solved having
as inputs the rates ∆tn indicated by the model’s actions. RSA
required at most 15 seconds for finding a feasible solution
for each time interval. Between network reconfigurations the
traffic demand fluctuated according to the given set of traffic
demand distributions. For the traffic demand fluctuations we
have drawn from each Ztn the samples {zitn}60i=1 representing
the traffic demand fluctuations every minute of the hour.
Sample δitn = zitn denotes that connection n requests δitn
spectrum slots at the ith minute of time interval t.

For each established connection, the allocated ∆tn

slots were compared to each δitn in order to calculate
the unserved slots and the excess (unutilized) allocated
slots. The unserved slots for each episode are given by
U = 1

60×24
∑

t

∑
n

∑
i |∆tn − δitn|, if ∆tn < δitn.

The excess slots for each episode are given by E =
1

60×24
∑

t

∑
n

∑
i(∆st − δitn), if ∆tn > δitn. Two-hundred

episodes were generated for each BA model and the unserved
and excess slots were averaged over these episodes. Table II
shows the average number of unserved (Ū ) and excess (Ē)
slots per time interval. It also shows the average number of
blocked connections (Π̄) per episode.

TABLE II: BA Model Comparison on DT Network

HBA MPBA EBA PBA
Av.# of Excess Slots (Ē) 337 35.3 82 155

Av.# of Unserved Slots (Ū) 23 49 48 20.3
Av.# of Blocked Connections (Π̄) 16 0 0 0

According to Table II, as expected, HBA allocates on the
average a higher number of excess slots (337) compared to
the other models. The high number of excess slots led, on
the average, to 16 blocked connections (these connections are
entirely terminated, each for an hour during a day). HBA
is clearly not a feasible solution for a network operating at
its capacity crunch. If we assume that the end user behavior
remains the same during the unavailability period, the 16
blocked connection lead to 23 unserved slots (greatly un-
balanced between the connections). Under this consideration,
PBA outperforms HBA by 11%.

Table II shows that MPBA, EBA, and PBA significantly
reduce the average excess slots by 80%, 75%, and 54%,
respectively, compared to HBA. Consequently, these models,
unlike HBA, did not cause any blocking. However, the traffic
demand fluctuations within each time interval resulted in some
unserved slots. In particular, PBA results on the average in
20.3 unserved slots, while MPBA and EBA, result on the
average in 49 and 48 unserved slots, respectively. Hence, PBA
outperforms MPBA and EBA, in terms of unserved slots, by
approximately 58%. Overall, PBA predicts a bandwidth that
more efficiently handles traffic demand fluctuations.

V. CONCLUSION

We proposed an effective formulation of a state-of-the-
art POMDP method that learns by means of DP an optimal
predictive BA model from a given set of traffic demand
distributions that is consequently used for bandwidth allocation
decisions during network reconfigurations. PBA is compared
to the naturally arising HBA, MPBA, and EBA techniques and
it is shown that it outperform HBA on the number of blocked
connections, as well as MPBA and EBA on the unserved
bandwidth that may occur during traffic demand fluctuations.
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