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Abstract— In this work, we present a complete rethink of the 
decision-making process in allocating bandwidth in a 
heterogeneous Fiber-Wireless network with machine intelligence.  
We highlight the use of an artificial neural network (ANN) at the 
central office to learn the uplink latency performance using 
multiple network and packet features.  In turn, the trained ANN 
enables the central office to facilitate flexible bandwidth 
allocations under diverse network scenarios in meeting low-
latency communication demands. 

Index Terms—Artificial neural network; dynamic bandwidth 
allocation; fibre-wireless networks, machine learning; low latency; 
Tactile Internet. 

I. INTRODUCTION 

The Tactile Internet era is igniting an explosion of real-time, 
remotely controlled human-to-machine (H2M) and machine-to-
machine (M2M) applications [1]-[4].  To support low latency 
(in the order of milliseconds, ms) and highly-reliable delivery 
of control/sensor-oriented traffic typical of such applications, 
we have previously considered the delivery of traffic over 
converged Fiber-Wireless (FiWi) networks along with the 
relocation of control servers closer to the end users [5]-[6] to 
expedite feedback and response.  

An illustration of the heterogeneous FiWi network 
considered in our work is shown in Fig. 1.  In the FiWi network, 
uplink bandwidth is shared amongst many optical network units 
(ONUs) that support aggregated wireless local area traffic from 
multiple end users.  The process of allocating bandwidth to and 
scheduling transmission from each of these end users thus 
influence the overall latency.  In this respect, the decision 
making process in allocating bandwidth and scheduling 
transmission is critical in meeting strict latency requirements 
and thus warrants attention.   

Dynamic bandwidth allocation (DBA) schemes in fiber 
access networks are commonly centralized at the central office 
(CO) to schedule bandwidth resources for uplink transmissions. 
The bandwidth allocated to individual ONUs is typically 
determined based on the requested bandwidth in the REPORT 
message  sent  from  each  ONU [7].  Efforts in reducing uplink  

 
 
 

 

 
latency have been previously reported in [7]-[10], by predicting 
bandwidth demand based on the information in the REPORT 
messages and on arrival traffic characteristics.  Statistical  
prediction methods such as constant  credit and linear credit [7],  
arithmetic  average [8],  exponential  smoothing  [9] and 
Bayesian estimation [10], have been used in DBA schemes  to 
predict bandwidth demand and subsequently to facilitate 
bandwidth allocation decisions.  However, the limitation of 
these existing algorithms lies in their use of single 
traffic/network features, e.g. packet arrival rate or aggregated 
traffic load, to predict bandwidth demand.  When network 
traffic load, packet length, and/or network configuration such 
as CO-to-ONU distance vary, the effectiveness of these 
algorithms in predicting bandwidth demand is compromised.  
Research in [11] and [12] explicitly reported on the challenge 
in determining the appropriate bandwidth to be allocated when 
network/traffic parameters vary. 

In this work, we present a complete rethink of the decision-
making process of allocating bandwidth with machine 
intelligence.  Although machine learning (ML) techniques have 
been recently adopted in traffic routing, post-processing of 
signals, network failure prediction, the capability of machine 
intelligence in benefiting bandwidth resource allocation still 
remains an open question.  For illustrative purposed, we show 
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Fig. 1.  An illustration of a heterogeneous wireless local area and optical 
access network architecture for converged service delivery 
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in this work, the exploitation of an artificial neural network 
(ANN) in (a) learning network uplink latency performance 
using diverse and multiple network features and in turn, (b) 
facilitating flexible bandwidth allocation decisions that 
effectively reduce the uplink latency under various network 
scenarios. 

 

II. ARTIFICIAL NEURAL NETWORK FACILITATED DYNAMIC 

BANDWIDTH ALLOCATION (DBA) 

A. DBA in Heterogeneous Networks 

In a typical DBA algorithm, the CO grants an amount of 
bandwidth through a GATE message to each ONU upon 
receiving the REPORT messages from ONUs in the previous 
polling cycle(s).  A polling cycle is defined as the time interval 
between consecutive transmissions from an ONU.  Early works 
on predicting bandwidth demand have used a limited-service 
approach whereby the CO would use the requested bandwidth 
BW௥௘௤  from REPORT messages to estimate the bandwidth 
demand, BWdem.  As discussed in Section I, statistical prediction 
methods such as constant credit and linear credit [7], arithmetic 
average [8], exponential smoothing [9] and Bayesian estimation 
[10], have been used to estimate BWdem.  In these early works, 
once BWdem is obtained, the CO would subsequently grant 
min{BWdem, BWmax} to the ONUs in the next polling cycle.  
Here, BWmax is the maximum bandwidth that can be allocated 
by the CO to the ONUs.   

A major challenge of limited-service DBA algorithms lies in 
estimating an accurate BWdem since bandwidth over-granting or 
likewise under-granting due to an inaccurate bandwidth 
prediction, may potentially increase uplink latency.  
Compounding the issue is that to the accuracy of BWdem 
depends on multiple network features, e.g. statistics of packet 
length, network traffic load and network configuration.  It is 
also complex to derive BWdem using conventional mathematical 
or analytical methods.   

B. ANN Learning and Decision-Making Model 

Here, we present an ANN learning and decision-making model 
and show how machine intelligence can be used to predict 
BWdem with high accuracy.  BWdem can be resolved into two 
bandwidth components as shown below:    

  BWௗ௘௠ ൌ BW௥௘௤ ൅ ߣ ௉ܶை௅௅ሺܵߙ௠௜௡ ൅ ሺ1 െ  ሻܵ௠௔௫ሻ    (1)ߙ

where the first term on the right hand side, BWreq is the 
requested bandwidth in the REPORT message from each ONU, 
and the second term on the right hand side is the predicted 
bandwidth.   TPOLL is the polling cycle duration of an ONU.  Smax 
and Smin are the maximum and minimum packet length, 
respectively.  The parameters λ and α (0 ≤ α ≤ 1) are arrival rate 
and the defined prediction coefficient, respectively. Our ANN 
learning and decision-making model predicts the second term 
on the right-hand side of (1) and hence BWdem, to yield the 
lowest uplink latency through selection of α. 

An ANN comprises an input layer, an output layer and some 
hidden layers in between, and learns by iteratively adjusting its 
weight  and  bias  associated  with  the  neurons in each layer to  

  

 

yield a desired output.  An ANN learns complex nonlinear 
relationships between the input features, and yields a target 
output.  A schematic of our proposed ANN learning and 
decision-making model is presented in the top diagram of Fig. 
2.  It must be noted that the average uplink latency over 
heterogeneous networks is impacted not only by α but also by 
diverse network features.  Therefore, to train our ANN, we use 
the following key input features: 
 

 Smax/Smin — maximum/minimum packet length 
 Savg/Svar — mean/variance packet length 
 λ — packet arrival rate in the wireless local area network 
 α — prediction coefficient 
 N — The number of ONUs 
 Dmax — The maximum CO-to-ONU distance 
 RPON — Data rate of the passive optical networks (PON) 
 RWLAN — Data rate of the wireless local area networks 

(WLAN) 

The target output is the average uplink latency of the network.   
As such, we train an ANN to learn the latency performance 
associated with different BWdem decisions through varying α. 
When supervised learning is complete, the trained ANN 
predicts the average uplink latency for any α value that can 
possibly be selected (refer to bottom diagram of Fig. 2), thereby 
enabling α that yields minimum latency to be solved.  The CO 
then allocates bandwidth with the BWdem solution 
corresponding to the selected α.  In the following section, we 
show how the supervised training can be implemented and 
highlight latency improvements achieved by a DBA algorithm 
facilitated by the trained ANN. This DBA algorithm is termed 
ANN-DBA for clarity. 

III. LATENCY PERFORMANCE IMPROVEMENT 

A. Supervised Training 

We use a training set generated with varying input features 
to train an ANN with three hidden layers.  The number of 

Fig. 2.  An illustration of the proposed ANN learning and bandwidth decision-
making model. 
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neurons of the three hidden layers is 5, 10, and 5, respectively.  
The target output of a training sample is the average uplink 
latency over a 1000-ms network running time (approximately 
1000 polling cycles times), corresponding to a given input 
network feature in an event-driven packet-level simulation 
environment.  With the knowledge of the dependence between 
uplink latency performance and the selection of α learnt by the 
trained ANN, the bandwidth allocation decision in (1) can be 
performed by finding α that minimizes latency.   

For illustrative purposes, we report on the training process 
and decision-making outcome of a 16-ONU PON-WLAN 
network when λ and α change.  We first use a training set 
containing 100 samples generated in an event-driven packet-
level MATLAB simulation environment.  The target output of 
a training sample is the average uplink latency, Duplink, over a 
1000-ms network running time, i.e. around 1000 polling cycles 
times. A network configuration comprising 16-ONUs with 10-
km CO-to-ONU distance, packet lengths that are uniformly-
distributed between 64 and 1518 bytes, and data rates of 1 Gbps 
and 100 Mbps for the optical and wireless segments 
respectively [7], are considered for illustrative purpose.   

Another 250-sample test set was generated to validate the 
training outcome.  The input features of the test set was fed to 
the trained ANN.  The ANN predicted latency values were 
compared with the target latency values provided by the test set.  
Fig. 3 illustrates the prediction error arising from our use of the 
trained ANN, the mean square error of which is 6.6041.  Next, 
the training set was increased from 100 to 300 samples with the 
training outcome validated using the same 250-sample test set.  
As shown in Fig. 3(b), with a MSE reduced to 2.2589 the 
performance of the ANN is significantly improved.  As 
expected, the training outcome improves with an increased size 
of the training samples.   

With the trained ANN, we are then able to analyze how 
uplink bandwidth allocation decisions, BWpre, will impact 
uplink latency performance.  Table I lists the selected α values 
and the corresponding minimum uplink latency as a function of 
traffic load.  Note that the aggregated traffic load listed is 
normalized by ܵܰߣୟ୴୥/ܴ୔୓୒ .  Table I highlights that after 
supervised training, the ANN can flexibly adjust bandwidth 
allocation decisions when the aggregated network load changes 
in the 16-ONU network. 

 

 

 

B. Latency Performance 

The effectiveness of ANN-DBA in making flexible 
bandwidth allocation decisions that minimizes uplink latency, 
is highlighted in Fig. 4.  The ANN-DBA allocates bandwidth in 
accordance to the decisions listed in Table I.  As shown in Fig. 
4, for all network loads, the uplink latency in a network using  

 

 

 

 
ANN-DBA (simulation) agrees with the ANN predicted latency 
(theory). Additionally, ANN-DBA results in latency 
performance improvement as compared to using the 
conventional limited-service DBA.  A comparison of the uplink 
latency performance between ANN-DBA and the limited-
service DBA as a function of varying CO-to-ONU distance, is 
shown in Fig. 3.  Once again, the proposed ANN-DBA makes 
bandwidth allocation decisions that minimizes latency and does 
so irrespective of varying CO-to-ONU distances.  
 

Our results in Figs. 4 and 5 show that the ANN is capable of 
learning and predicting network latency performance with 
diverse network features as compared to the conventional 
limited-service DBA that relies on a singular traffic feature.  In 
practice, training sets can be collected during network operation.  
Computation will be mainly spent in the supervised learning 
process, when the optimal weight matrix for each ANN layer is 
determined.  Once training has ended, the CO needs only to 
store the weight matrix for each ANN layer. Mapping of input 

TABLE I 
OPTIMAL PREDICTION COEFFICIENT α  

(16-ONU network, 10 km CO-to-ONU distance) 

Traffic load 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
α 0 0 0 0.10 0.37 0.48 0.56 0.58 

Latency 
(μs) 

45.
52 

40.
60 

40.
01 

45.8
1 

55.4
3 

71.4
7 

104.
85 

196.
64 

  
(a)                                                         (b) 

Fig. 3.  Prediction error of the trained ANN. (a) Training with 100 samples; and
(b) training with 300 samples. 
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Fig. 4.  Latency performance comparison as a function of traffic load. 
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Fig. 5.  Latency performance comparison as a function of CO-to-ONU distance.
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features to the target output value can be done without further 
computation. 

 

IV. CONCLUSIONS 

In this work, we investigated the applicability of an ANN in 
learning uplink latency, thereby in achieving flexible 
bandwidth allocation decisions that reduce latency.  We 
highlighted the ANN’s capability in predicting latency utilizing 
multiple network features.  With the trained ANN, we showed 
that flexible bandwidth allocations under diverse application 
scenarios can be achieved and low-latency communication 
demands can therefore be met. 
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