
Resource Allocation in Slotted Optical Data Center

Networks

K. Kontodimas1, K. Christodoulopoulos1, E. Zahavi3, E. Varvarigos1,2

1School of Electrical and Computer Engineering, National Technical University of Athens, Greece
2Department of Electrical and Computer Systems Engineering, Monash University, Australia

3Mellanox Technologies Ltd., Yokneam, Israel

{kontodimas, kchristo}@mail.ntua.gr, eitan@mellanox.com, vmanos@central.ntua.gr

Abstract— The introduction of all-optical switching in data

center interconnection networks (DCN) is key for addressing

several of the shortcomings of state-of-the-art electronic switched

solutions. Limitations in the port count and reconfiguration speed

of optical switches, however, require novel DCN designs offering

network scalability and dynamicity. We present the NEPHELE

DCN which relies on hybrid electro-optical top-of rack (TOR)

switches to interconnect servers over multi-wavelength all-optical

rings. We described in detail the NEPHELE control cycle which

follows the SDN paradigm. We evaluate the performance of

NEPHELE regarding the effect of the control plane delay under

realistic traffic.

Keywords— Time-Wavelength-Space division multiplexing;

slotted and synchronous operation; dynamic resource allocation,

scheduling; matrix decomposition

I. INTRODUCTION

The widespread availability of cloud applications to billions of

end-users and the emergence of platform- and infrastructure-as-

a-service models rely on concentrated computing infrastructures,

the Data Centers (DCs). As traffic within the DC (east-west) is

higher than incoming/outgoing traffic, and both are expected to

continue to increase [1], DC networks (DCN) play a crucial role.

High throughput, scalable and energy/cost efficient DCN

networks are required to fully harness the DC potential.

State-of-the-art DCNs are based on electronic switches

connected in fat-tree topologies using optical fibers, with

electro-opto-electrical transformation at each hop [2]. However,

fat-trees tend to underutilize resources, require a large number of

cables and switches, suffer from poor scalability and

upgradability (lack of transparency), and they result in very high

energy consumption [3], [4]. Application driven networking [5],

[6], an emerging trend, would benefit from a network that

flexibly allocates capacity where needed.

The introduction of optical switching in DCN is a key for

solving these shortcomings. Many recent works proposed hybrid

electrical/optical DCN, a survey of which is presented in [7].

The authors of [8] and [9], proposed a DCN in which heavy

long-lived (elephant) flows are selectively routed over an optical

circuit switched (OCS) network, while the rest of traffic goes

through the electronic packet switched (EPS) network. The

identification of elephant flows is rather difficult on the fly,

while it was observed that such flows are not very typical [4],

making it difficult to sustain high OCS utilization. Instead, a

high connectivity degree is needed [4]. To enable higher

connectivity, [10] proposed and prototyped a very dense hybrid

DCN that also supports multi-hop connections. The total delay,

including control plane and OCS hardware reconfiguration

(micro electro-mechanical system – MEMS – switches), was

measured to be in the order of hundreds of msec. Multi-hop

routing was exploited as shared circuits in [11] controlled via

extended OpenFlow [12], showing that circuit sharing

compensates for slow OCS reconfigurations.

Other proposed DC interconnects completely lack electrical

switches. Proteus, an all-optical DCN architecture based on a

combination of wavelength selective switches (WSS) and

MEMS was presented in [13]. Again, multi-hop is used to

improve the utilization and hide the low reconfiguration speed of

MEMS. [14] introduced hybrid OCS and optical packet/burst

switching (OPS/OBS) architectures, controlled using SDN.

Various other architectures based on OPS/OBS were proposed

in [7], [15] and references therein. However, OPS/OBS

technologies are not yet mature, so their current target could be

only small-scale networks with limited upgradability potentials.

The authors in [16] presented a hybrid DCN architecture

called Mordia, which uses WSS to achieve switching times of

11.5 μs. Mordia operates in a dynamic slotted manner to achieve

high connectivity. However, the scalability of Mordia is limited

as it uses a single wavelength division multiplexing (WDM) ring

that can support traffic for a few racks, while resource allocation

algorithms exhibit high complexity and cannot scale to large

DCs.

The European project NEPHELE developed an optical DCN

that leverages hybrid electrical/optical switching with SDN

control to overcome current datacenter limitations [17]. To

enable dynamic and efficient sharing of optical resources and

collision-free communication, NEPHELE operates in a

synchronous slotted manner. Timeslots are used for rack-to-rack

978-3-903176-07-2 © 2018 IFIP

248 Invited papers ONDM 2018

communication and are assigned dynamically, on a demand

basis, so as to attain efficient utilization, leading to both energy

and cost savings. Moreover, multiple wavelengths and optical

planes are utilized for a scalable and high capacity DC network.

 The NEPHELE network relies on WSSs, which are faster

than MEMS used in [8]-[11], and more mature than OPS/OBS

used in [14]-[15]. The fast switching times, along with the

dynamic slotted operation, provide high and flexible

connectivity. Compared to Mordia [16], which also relies on

WSS, NEPHELE is more scalable: it consists of multiple WDM

rings, re-uses wavelengths, and utilizes cheap passive routing

components and scalable scheduling schemes. We present fast

scheduling algorithms for NEPHELE DCN to meet dynamic

reconfiguration requirements and evaluate their effect along with

the control plane overhead on the performance of realistic

applications.

In the following we shortly present the NEPHELE data plane

(Section II) and then we describe in detail its control cycle

(Section III) and the scheduling approaches (Section IV).

Finally, using a packet level simulator we evaluate the effect of

the control plane delay under realistic traffic (Section V).

II. NEPHELE NETWORK ARCHITECTURE

The NEPHELE DCN, shown in Fig. 1, is divided into 𝑃 pods

of racks and is built out of hybrid electrical/optical top-of-rack

(TOR) switches and all-optical POD switches. A pod consists of

𝐼 POD switches and 𝑊 TOR switches, interconnected as

follows: each TOR switch has 𝐼 ports with tunable transmitters

(Tx) and each one is connected to a different POD switch

(among I). A rack consists of 𝑆 servers connected through 𝑆

corresponding ports to the TOR switch. The POD switches are

interconnected through WDM rings to form optical planes. An

optical plane consists of a single POD switch per pod (for a total

of 𝑃 POD switches) connected with 𝑅 fiber rings. Each fiber

ring carries WDM traffic of 𝑊 wavelengths (by design equals

the number of racks/pod). There are 𝐼 identical and independent

optical planes. In total, there are 𝐼 ⋅ 𝑃 POD switches, 𝑊 ⋅ 𝑃 TOR

switches and 𝐼 ⋅ 𝑅 fiber rings.

The key routing concept is that each TOR switch listens to a

specific wavelength and wavelengths are re-used among pods.

Each TOR employs Virtual Output Queues (VOQ) per TOR

destination to avoid head-of-line blocking. The NEPHELE

TORs employ tunable Tx that are tuned according to the desired

destination. Thus, the tunable Tx selects the destination/

wavelength to route traffic. The 1 × 2 space switch inside the

corresponding POD switch is set according to whether the

destination is in the same pod with the source or not. Intra-pod

traffic is forwarded to an AWG that passively routes it towards

the selected destination. Inter-pod traffic is routed via the 1 × 2

switch towards a 𝑊 × 𝑅 CAWG and then to one of the 𝑅 fiber

rings (according to the input port/source and the wavelength

used). The traffic propagates in the ring passing through

intermediate POD switches and is dropped at the destination

pod, by setting appropriately the related WSSs. The drop port is

connected to an AWG that again passively routes the traffic.

Finally, NEPHELE operates in a slotted and synchronous

manner as discussed in the next section. A parallel EPS network

can also be utilized to handle high priority traffic and/or ACK

TCP packets which, according to simulations presented in this

paper, seem to play a major role in the network performance. A

more detailed description of the NEPHELE data plane is

provided in [17][18]. Also [17] presents some basic techno-

economic results.

III. NEPHELE CONTROL CYCLE

NEPHELE exploits the SDN concept that decouples the data

and control planes through open interfaces, enabling

programmability of the networking infrastructure [17]. A key

functionality of NEPHELE SDN controller is the coordination

of the resource usage, including the timeslot/plane dimension

[19]. Thus, an important building block of the SDN controller is

the scheduling engine, which allocates resources for TOR

communication in a periodic and on demand manner.

 Two scheduling approaches are envisioned in NEPHELE.

Fig. 1. NEPHELE Resource allocation and Data cycles.

ONDM 2018 249

We assume that long and medium term traffic variations can be

solved with offline scheduling algorithms. The offline

scheduling algorithms that run periodically or on demand

(triggered by significant application/traffic changes) can

calculate the optimum resource allocation (schedule) since their

running time is not crucial. Then sort-time traffic variations or

failure events are treated by faster online scheduling algorithms

that calculate incremental changes in the running schedule.

Moreover, we also envision two traffic identification modes:

(i) application-aware and (ii) feedback-based. The former mode

[5], [6] assumes that applications communicate to the

NEPHELE SDN controller (or via the DC orchestrator) their

traffic requirements. The latter, feedback-based, mode assumes

that the central controller collects (monitors) data from the TOR

queues [9]. Hybrid versions of these two modes are also

applicable.

In the NEPHELE network we divide the time in slots and we

have periods of 𝑇 timeslots. In all scheduling and traffic

identification cases, we assume that the controller creates the

queue matrix 𝐐(𝑛) (of size (𝑊 ⋅ 𝑃) × (𝑊 ⋅ 𝑃)) for period 𝑛. We

denote by 𝐀(𝑛) the matrix of arrivals at the queues during period

𝑛, and by 𝐒(𝑛) the schedule calculated for period 𝑛.

The NEPHELE network operates in two parallel cycles: a)

Data communication cycles of 𝑇 timeslots (also referred to as a

Data period), where actual communication between TORs takes

place and b) Control plane cycles of duration 𝐶 (measured in

Data periods), where control information is exchanged. Control

plane cycle 𝑛 corresponds to Data period 𝑛, and computes the

schedule 𝐒(𝑛) to be used during that period. Note, however, that

the schedule is computed based on information that was

available 𝐶 periods earlier than the Data period the control plane

cycle is applied to. Thus, 𝐒(𝑛) is a function of 𝐐(𝑛 − 𝐶), i.e.,

𝐒(𝑛) = 𝑓 (𝑔[𝐐(𝑛 − 𝐶)]), (1)

where �̂�(𝑛) = 𝑔[𝐐(𝑛 − 𝐶)] is the function that creates the

estimated queue matrix �̂�(𝑛) from 𝐐(𝑛 − 𝐶), upon which the

schedule is calculated, and 𝑓 is the scheduling algorithm. When

𝐶 > 1 period (control delay is larger than the Data period), a

new Control plane cycle still starts every Data period. So, there

are 𝐶 Control plane cycles running in parallel.

The queues evolution is described by 𝐐(𝑛 + 1) = 𝐐(𝑛) +
𝐀(𝑛) − 𝐒(𝑛), where 𝐒(𝑛) is calculated as in Eq. (1). The control

plane delay 𝐶 depends on many factors, including the execution

time of the scheduling algorithm, the delay of the control

protocol carrying information from TORs to the SDN controller

and from the SDN controller to the data plane devices. Both

delays depend on the network size and the choice of the Data

period 𝑇. For the scheduling decisions to be efficient, the

scheduling matrix 𝐒(𝑛) computed based on an estimated queue

matrix �̂�(𝑛) [which in turn is calculated from 𝐐(𝑛 − 𝐶)] should

be a “good” scheduling to be used during Data interval 𝑛. This

is true when �̂�(𝑛) is a good approximation of 𝐐(𝑛). In case of

slowly or moderately changing traffic, we expect calculations

made for previous periods to be valid.

T

Monitoring
data

Scheduling
algorithm

Transferring of
network configuration

...

C

T

Data
communication

cycle

Resource allocation
cycle for Data

period n

Q(n-C) Q(n+1) Q(n)

S(n)

Transmit
according to

arrivals A(n)

Traffic
Matrix

creation

...

Arrivals A(n-C-1)

Fig. 2. NEPHELE Data and Control plane cycles.

In estimating �̂�(𝑛) from 𝐐(𝑛 − 𝐶), it is possible to use

statistical predictions, filters, and other (notably, predefined

cluster application communication patterns) methods to improve

performance. Moreover, it is possible for the scheduler to void

fill the unallocated resources in 𝐒(𝑛) to enable opportunistic

transmissions. Finally, the overall scheme is “self-correcting”: if

some queues are not served for some periods due to poor

scheduling and their size grows due to new arrivals, this will be

communicated with some delay to the controller, and they will

eventually be served.

IV. SCHEDULING ALGORITHMS

We now focus on the scheduling problem in the NEPHELE

network. In any traffic identification mode (application-aware or

feedback-based), we start from the estimated queue matrix �̂�(𝑛)

and devise algorithms to calculate the schedule 𝐒(𝑛) (function 𝑓

in Eq. (1)). For reference, we can assume that we calculate the

estimated queue matrix (function 𝑔 in Eq. (1)) as �̂�(𝑛) =

𝐀(𝑛 − 𝐶 − 1) + �̂�(𝑛 − 1) − 𝐒(𝑛 − 1), where in the expression

we acknowledge that due to control plane delay 𝐶, the central

scheduler has access to (delayed) arrival information 𝐀(𝑛 − 𝐶 −
1) instead of 𝐀(𝑛). This corresponds to the case where the

schedule 𝐒(𝑛) calculated on �̂�(𝑛) serves the arrived traffic

𝐀(𝑛 − 𝐶 − 1), plus a correction equal to traffic not served in the

previous period �̂�(𝑛 − 1) − 𝐒(𝑛 − 1).

The scheduling algorithm provides the schedule 𝐒(𝑛), which

identifies the TOR pairs that communicate during each timeslot

and for each optical plane for Data period 𝑛. Note that

wavelengths and rings are dependent resources; the selected

wavelength is determined by the destination and the ring

depends on the source and destination [18]. So, in NEPHELE,

the allocated resources are the timeslots and the optical planes

(𝐼 ⋅ 𝑇 in total), also called generalized slots. The scheduling

algorithm takes the estimated queue matrix �̂�(𝑛) and

decomposes it (fully or, if not possible, partially) into a sum of

𝐼 ⋅ 𝑇 permutation matrices. These identify the source and

destination TORs that communicate at each generalized slot.

The scheduling algorithm takes into account the constraints

under which a TOR can transmit/receive to/from a single TOR.

As discussed earlier, there are two scheduling approaches:

offline and incremental, trading off execution time for

optimality.

250 Invited papers ONDM 2018

A. Offline Scheduling

Offline scheduling pertains to the optimal decomposition of

matrix �̂�(𝑛). We define the critical sum 𝐻[�̂�(𝑛)] = ℎ as the

maximum of the row sums and column sums of matrix �̂�(𝑛).

The decomposition of �̂�(𝑛) can be performed in an optimal

manner following the well-known Hall’s theorem (an integer

version of the Birkhoff-Von Neumann theorem). A more

detailed analysis of these techniques is discussed in [18].

The column sums will be on the average ≤ 𝑆 ⋅ 𝑇, if the

destinations of packets are uniformly distributed, or with high

probability, if the network operates at less than full load. Also, a

flow control mechanism can be applied to smoothen the traffic

going to a given destination and enforce this constraint. In such

a (“typical”) case, the column sums of the arrival matrix 𝐀(𝑛)

will be ≤ 𝑆 ⋅ 𝑇 and so will also be its critical sum, and thus the

schedule 𝐒(𝑛), that is calculated based on �̂�(𝑛) = 𝐀(𝑛 − 𝐶),

assuming 𝑆 ≤ 𝐼, can be chosen so as to completely serve all the

arrivals in 𝐀(𝑛 − 𝐶) in the available 𝐼 ⋅ 𝑇 generalized slots.

Thus, in the typical case, NEPHELLE provides both full

throughput and delay guarantees.

In the worst case, the optimal algorithm executes a maximum

matching algorithm 𝐼 ⋅ 𝑇 times. Finding a maximum matching

with e.g. the well-known Hopcroft–Karp algorithm exhibits

complexity of 𝑂(𝑀(�̂�) ⋅ √𝑊 ⋅ 𝑃), where 𝑀(�̂�) is the number of

nonzero elements in �̂�, which in the worst case equals (𝑊 ⋅ 𝑃)2.

B. Incremental Scheduling

It is evident from the above discussion and related results [18]

that offline scheduling is not suitable to serve short-term varying

traffic. Measurements in commercial data centers indicate that

application traffic can be relatively bursty, with flows activating/

deactivating within ms [4]. However, the traffic tends to be

highly locally persistent: a server tends to communicate with a

set of destinations that are located in the same rack or the same

cluster/ pod [4]. Note that TOR switches in NEPHELE

aggregate the flows of the servers in a rack, smoothening out the

burstiness of individual flows, especially considering locality

persistent traffic.

A detailed definition of locality persistency is given in [18].

We denote by 𝐃(𝑛) = 𝐀(𝑛) − 𝐀(𝑛 − 1) the arrival matrix

difference, and by 𝛿(⋅) the density of a matrix. Then, the

Locality Persistency Property holds if 𝛿(|𝐃(𝑛)|) ≪ 1. We also

define the estimated queue matrix difference as 𝐃�̂�(𝑛) =

�̂�(𝑛) − �̂�(𝑛 − 1). Note that when arrivals have the locality

persistency property, then we also expect 𝛿(|𝐃�̂�(𝑛))|) ≪ 1.

Motivated from the high locality observation, we investigated

incremental scheduling, i.e. rely on the previous schedule to

calculate the new one. The expected benefit is that we need to

update only changed elements of the permutation matrices of the

decomposition of �̂�(𝑛 + 1), with no need to modify the rest. A

number of incremental scheduling algorithms are presented in

[18] where we also present a greedy incremental heuristic with

complexity of 𝑂(𝛿(|𝐃�̂�|) ∙ 𝛪 ⋅ 𝛵 ⋅ (𝑊 ∙ 𝑃)2), where 𝛿(|𝐃�̂�|) ≪ 1

in view of the persistency property.

This heuristic achieves throughput that is close to optimal and

running time in the order of hundreds of ms [18], using Matlab

and an Intel® Core™ i5 laptop. A parallel implementation of the

heuristic algorithm on an FPGA was presented in [20] and

showed that the schedule can be computed in tens of ms even for

dense input matrices (𝛿(|𝐃�̂�| < 0.25) using incremental

algorithms. This implies that we can calculate the schedule

within 1 Data period, which is quite promising for the

performance of the NEPHELE architecture. However, the

control plane overhead 𝐶 depends also on the signaling

overhead: monitoring (in feedback based traffic estimation

mode) and transferring the schedule to the data plane devices,

the NEPHELE POD and TOR switches. The effect of the total

control plane overhead is examined in the next section.

V. PERFORMANCE EVALUATION

A. Simulation Model and parameters

To evaluate the performance of the NEPHELE architecture,

we developed a packet level network simulator. The simulator is

an extension of OMNET++ 4.3.1 with INET 2.4.0, a framework

that contains implementations for various real-life network

components and protocols. We evaluated the network

performance using an application that simulates MapReduce,

which was implemented by Mellanox.

In our simulation model, we consider that the control plane

delay, which includes the time to gather monitoring information

(if we operate the network in feedback based, would be zero in

application-aware mode), to calculate the schedule (which as

previously discussed is fast, within 1 Data period [20]) and to

distribute the schedule to the data plane devices, is described

through the parameter 𝐶. This in turn defines the number of

multiple identical (virtual) schedulers that work in parallel. We

also assume that each parallel scheduler knows the 𝐶 previous

schedules (feasible, as the schedule is computed in 1 Data

period).

In the simulated network we run a number of MapReduce

jobs simultaneously. Each MapReduce job requires a number of

worker nodes: mappers, reducers and storage servers and runs

for a number of iterations. The communication pattern for each

particular MapReduce job, regarding the server where each

worker node resides, the size of the MapReduce data produced

in each phase, the number of MapReduce iterations and the

computational delay for map and reduce operations, are

described using appropriate semantics in an input file. In the

simulations the assignment of the worker nodes to the servers

was random. This means that a server could host simultaneously

multiple types of worker nodes for the same or different jobs.

The communication between the worker nodes is achieved

via Ethernet packets over TCP/IP. We assumed full-duplex 10G

Ethernet from a server to the corresponding NEPHELE TOR

switch. For the TOR to TOR communication we rely on

NEPHELE TDMA operation. The Ethernet packets are stored in

ONDM 2018 251

Virtual output queues (VOQ) and served in slots according to the

computed schedules.

We study the impact of various parameters, such as the

Control cycle delay 𝐶, the number of MapReduce jobs, or the

cluster size (𝑃 ⋅ 𝑊), on the throughput, in terms of total

makespan. The makespan is defined as the time it takes for all

MapReduce jobs to finish. TABLE I. summarizes the NEPHELE

network parameters, as well as the TCP-related parameters. Note

that a target for the NEPHELE network would be to have 1600

racks with 20 servers each, while each timeslot (of duration

200μs) aggregates the traffic of all servers residing in a rack.

Since it is not possible to simulate a fully-fledged NEPHELE

network, but only smaller clusters with fewer servers per rack,

the NEPHELE parameters are also scaled down accordingly. We

assumed 𝐼 = 2 optical planes, and the scheduling period 𝑇 took

values so that the generalized slots/resources equals to the

number of racks (𝑇 ⋅ 𝐼 = 𝑃 ⋅ 𝑊).

The key parameters that we examine are the Control cycle

delay 𝐶, the number of MapReduce jobs that run simultaneously

in the cluster and the number of cluster’s racks; their default

values are 4, 5 and 8, respectively. In all scenarios, the ratios of

the MapReduce worker nodes types remained the same: the

number of mappers equals to half, while the number of reducers

and storage servers equals to a quarter of the available servers. A

parallel (dual) network (utilizing 1 Gbps capacity) is also used to

route the TCP ACKs.

TABLE I. SIMULATION PARAMETERS

Parameter Value
Number of servers in each rack (𝑆) 2

Number of planes (𝐼) 2

Link capacity per plane (each direction) 10Gbps

Timeslot duration 200μs

Maximum segment size (MSS) 625 bytes

TCP window size 65000 bytes

Storage server Mapper Reducer output 5 10 5 Mbytes

Mapper processing time 25μs

Reducer processing time 20μs

Number of MapReduce iterations 3

We examine three queue matrix estimation policies. The first

estimation policy assumes static uniform traffic under which no

traffic identification mode (monitoring or application awareness)

is assumed and the resource allocation is evenly distributed

among the TOR pairs (round-robin scheduling). The second

policy assumes that �̂�(𝑛) (described in Sections III and IV) is

computed based on the most recent known arrivals 𝐀(𝑛 − 𝑐 −
1). The third policy is a simplistic prediction mechanism that

assumes that the arrivals for the next 𝐶 Data periods will be

equal to the latest 𝐀(𝑛). It then virtually applies the latest 𝐶

known schedules and computes an estimation for the remainder

in the queues when the schedule will be applied (after 𝐶 Data

periods). The above queue estimation policies are combined

with the incremental scheduling algorithm which is extended

with a greedy randomized void filling heuristic. Void filling is

used to fill the unallocated slots left empty by the scheduling

algorithm. In particular, a randomized greedy heuristic greedily

computes a set of matchings in order to fill the free slots in an

uniform way, taking into account the previously allocated slots

and the transmission constraints that they yield.

B. Simulation Results

We initially examine the effect of utilizing i) a parallel packet

switched network over which we sent TCP ACK packets and ii) a

randomized void filling heuristic to fill the empty slots/

permutations of the schedules on slot (network capacity)

utilization over time. As it can be observed in Fig. 3, both the

effect of the parallel network and the randomized void filling

heuristic is quite significant. Since, TCP features congestion

control, the TCP window limits the traffic load the servers

transmit. This has a major impact to the overall slot utilization

and thus to the throughput and the makespan of the network.

These two techniques improve the TCP window pipelining

resulting to improved slot utilization and reduced makespan. In

particular, we observed a reduction of the makespan for the 4

MapReduce jobs from ~27,4 s in the case of no parallel/no void

filling to ~27,2 s in the case of parallel/no void filling and to ~14

s in the case of no parallel/void filling. The combination of

parallel/ void filling achieves a substantially lower makespan of

~10,3 s. In the following we will assume that the NEPHELE

network uses both parallel/ void filling.

Fig. 3. Impact of the parallel network and randomized void filling heuristic

on slot utilization.

We now examine the effect of the control delay 𝐶 which was

varied from 0, 5, 10, 20, 50 to 200 Data periods. As it is shown

in Fig. 4, the makespan for the case of the static round-robin

policy remains constant at about 0.36 s, regardless of the Control

cycle delay. Meanwhile, the other two policies seem to perform

better for at most 19%, given that they take into account the

traffic (monitoring or application awareness) and carry out

scheduling based on �̂�(𝑛) estimates. This performance

improvement decreases as the Control cycle delay increases, and

eventually in the sample of Control cycles equal to 200 Data

periods, it gets worse than the static round-robin for at most

13%. This is expected, since the longer control delay results to

an increased chance the actual traffic at the queues to

substantially differ from the calculated schedule. It can also be

observed that in small numbers of Control cycles, utilizing

prediction also improves the performance. However, this

improvement fades out from 20 Control cycles and on.

In the next scenario, we consider the cases where we have 1,

4, 7 and 10 MapReduce jobs simultaneously running on the

252 Invited papers ONDM 2018

cluster. It is expected that as the number of jobs increases, the

network load increases, but also the traffic dynamicity

decreases, given that the assignment of the worker nodes with

the servers is done randomly and uniformly. As shown in Fig. 5,

the makespan increases with the job number in all queue matrix

estimation policies, since the network load increases. However,

especially in the case of 1 job, where only certain parts of the

network are utilized in each Mapreduce phase, we can see that

the static round-robin policy performs much worse than the

other two policies for about 32%. This difference is reduced for

larger numbers of jobs to at least 16%.

In the last considered scenario, we have different cluster sizes,

namely of 4, 8, 16 and 32 racks (8, 16, 32 and 64 servers,

respectively). Fig. 6 shows the performance of the three queue

matrix estimation policies. In particular, we can observe that the

policies that take into account the traffic have a much better

performance than the static round-robin that ranges between 12-

48% and increases with the increase of the cluster size.

In our tests we compared NEPHELE with a fat-tree topology.

We observed that when Control cycle was set to 0, NEPHELE

performed similarly to a fat-tree, in terms of makespan.

Fig. 4. Impact of control cycle (in Data periods) on makespan.

Fig. 5. Impact of the number of MapReduce jobs on makespan.

Fig. 6. Impact of cluster size on makespan.

VI. CONCLUSIONS

We presented the NEPHELE DCN architecture and described

the related resource allocation problem. In NEPHELE, a

centralized SDN controller allocates slots and optical planes to

communicating pairs, and thus coordinates over time, space and

wavelength to avoid collisions and achieve efficient operation.

We described the NEPHELE control cycle, including the

importance of the policy used to obtain good queue matrix

estimates that approximate the traffic pattern after the control

cycle delay. We conducted simulations using OMNET++ under

MapReduce realistic traffic. We examined the effect of utilizing a

parallel network for TCP ACKs, and of a void filling heuristic.

We observed that both these techniques, improve the makespan.

We considered the case of applying a static round-robin policy

and two policies that take into account the traffic. We observed

that when the control cycle delay is high, a static round-robin

policy seems preferable. The policies that take into account the

traffic induce a significant improvement to the total makespan

that can reach 48% when the short-term load dynamicity is high.

ACKNOWLEDGMENT

Partially funded by EC through NEPHELE project (g.a. 645212).

REFERENCES

[1] Cisco Global Cloud Index: Forecast and Methodology, 2016-2021.

[2] Al-Fares, A. Loukissas, A. Vahdat, “A Scalable, Commodity Data Center
Network Architecture”, ACM SIGCOMM, 2008

[3] T. Benson, A. Akella, D. Maltz, “Network Traffic Characteristics of Data
Centers in the Wild”, ACM SIGCOMM, 2010.

[4] A. Roy, H. Zeng, J. Bagga, G. Porter, A. Snoeren, “Inside the Social
Network's (Datacenter) Network”, ACM SIGCOMM, 2015.

[5] J. Follows, D. Straeten, “Application driven networking: Concepts and
architecture for policy-based systems”, IBM Corporation, 1999.

[6] X. Zheng, Z. Cai, J. Li, H. Gao, “An application-aware scheduling policy
for real-time traffic”, International Conference on Distributed Computing
Systems (ICDCS), 2015.

[7] C. Kachris, I. Tomkos, “A Survey on Optical Interconnects for Data
Centers”, IEEE Communications Surveys & Tutorials, 14 (4), 2012.

[8] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, A. Vahdat, “Helios: a hybrid electrical/optical
switch architecture for modular data centers”. ACM SIGCOMM, 2010.

[9] G. Wang et al, “c-through: part-time optics in data centers”, ACM
SIGCOMM, 2010.

[10] K. Christodoulopoulos, D. Lugones, K. Katrinis, M. Ruffini, D.
O’Mahony, “Performance Evaluation of a Hybrid Optical/Electrical
Interconnect”, IEEE/OSA Journal of Lightwave Technology, 2015.

[11] Y. Ben-Itzhak, C. Caba, L. Schour, S. Vargaftik, “C-Share: Optical
Circuits Sharing for Software-Defined Data-Centers”, arXiv, 2016.

[12] N. McKeown et al, “OpenFlow: Enabling Innovation in Campus
Networks”, ACM Computer Communication Review, 2008.

[13] A. Singla et al, “Proteus: a topology malleable data center network,”, ACM
SIGCOMM Workshop on Hot Topics in Networks, 2010.

[14] S. Peng, et al, “Multi-Tenant Software-Defined Hybrid Optical Switched
Data Centre”, IEEE/OSA Journal of Lightwave Technology, 2015.

[15] N. Calabretta, W. Miao, “Optical Switching in Data Centers: Architectures
Based on Optical Packet/Burst Switching”, Optical Switching in Next
Generation Data Centers, pp.45-69, Springer, 2017.

[16] G. Porter et al, “Integrating microsecond circuit switching into the data
center,” ACM SIGCOMM, 2013.

[17] P. Bakopoulos, et. al. “NEPHELE: an end-to-end scalable and dynamically
reconfigurable optical architecture for application-aware SDN cloud
datacenters”, IEEE Communications Magazine, 2018.

[18] K. Christodoulopoulos et al, "Efficient bandwidth allocation in the
NEPHELE optical/electrical datacenter interconnect", IEEE/OSA Journal
of Optical Communications and Networking, 9(12), pp. 1145-1160, 2017.

[19] G. Landi, M. Capitani, K. Christodoulopoulos, D. Gallico, M. Biancani, M.
Aziz, “An Application-Aware SDN Controller for Hybrid Optical-
Electrical DC Networks”, ICN 2017.

[20] I. Patronas, V. Kitsakis, N. Gkatzios, D. Reisis, K. Christodoulopoulos, E.
Varvarigos, "Scheduler Accelerator for TDMA Data Centers", PDP 2018.

ONDM 2018 253

