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Abstract—Failure detection is essential in optical networks as a 
result of the huge amount of traffic that optical connections 
support. Additionally, the cause of failure needs to be identified 
so failed resources can be excluded from the computation of 
restoration paths. In the case of soft-failures, their prompt 
detection, identification, and localization make that recovery can 
be triggered before excessive errors in optical connections 
translate into errors on the supported services or even become 
disrupted. Therefore, Monitoring and Data Analytics (MDA) 
become of paramount importance in the case of soft-failures. In 
this paper, we review a MDA architecture that reduces 
remarkably detection and identification times, while facilitating 
failure localization. In addition, we rely on Optical Spectrum 
Analyzers (OSA) deployed in the optical nodes as monitoring 
devices acquiring the optical spectrum of outgoing links. 
Analyzing the optical spectrum of optical connections, specific 
soft-failures that affect the shape of the spectrum can be detected. 
A workflow consisting of machine learning algorithms, designed 
to be integrated in the aforementioned MDA architecture, will be 
studied to analyze the optical spectrum of a given optical 
connection acquired in a node and to determine whether a filter 
failure is affecting it, and in such case, what is the type of filter 
failure and its magnitude. Exhaustive results are presented 
allowing to evaluate the proposed method. 

Keywords—Failure Detection and Identification, Failure 
Magnitude Estimation, Elastic Optical Networks. 
 

I. INTRODUCTION 

Hard failures detection at the optical layer, e.g. a fiber cut, 
can be easily detected, e.g. by the end transponders of optical 
connections. Even though the proper identification of the 
failed element is not an easy task, e.g. a failure in an 
intermediate optical amplifier, determining that the failure is 
in a topological element (node or link) is enough for excluding 
such element when restoration routes are computed [1]. 

However, the scenario is more difficult when we face soft-
failures, such as laser drift and filter problems in the optical 
layer, whose presence is indirectly revealed, e.g., by observing 
bit error rate (BER) variations [2]. Such BER degradation, 
although not very high at first, could evolve toward high 
values and even cause disconnections. This is the very reason 
behind continuously monitoring the network, so such 
degradations can be anticipated. Nonetheless, it is not enough 
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to monitor the BER evolution in the end transponders of 
optical connections, but also in intermediate nodes, so 
localization algorithms can determine the failed resource thus, 
facilitating proactive restoration strategies. In our previous 
work in [3], we used Optical Spectrum Analyzers (OSA) to 
analyze the shape of the optical spectrum of a signal to 
determine whether the signal was affected by a soft-failure. By 
installing OSAs in every optical node, such soft-failures can 
be easily identified, i.e., the cause of the failure is identified, 
and localized, being thus their output, the perfect input for 
restoration algorithms. 

Machine learning (ML) algorithms can help in the process 
of detecting and identifying soft-failures. However, those 
algorithms should be placed closed to the network nodes 
aiming at reducing the amount of monitoring data to be 
conveyed from Observation Points (OP), as well as increasing 
the frequency of measurements, so as to reduce detection 
times [4]. For this very reason, the authors in [5]-[7] proposed 
a distributed Monitoring and Data Analytics (MDA) 
architecture, where data analytics capabilities are placed 
closed to the network nodes. OPs are configured from a 
centralized system to perform measurements that are 
immediately exported to the local MDA system, where ML 
algorithms are in charge of aggregating and analyzing the 
received data and, in case of detecting any anomaly or 
degradation, send a notification to the central system in charge 
of localizing its cause. 

In this paper, we assume such distributed MDA architecture 
and study different ML-based methods for filter failure 
detection and identification. The rest of the paper is organized 
as follows. Section II is devoted to introduce the basic 
concepts about the optical spectrum and the features that 
allows its shape analysis. Filtering failures that might change 
its shape are also introduced. Next, useful ML approaches are 
briefly introduced and then, the distributed MDA architecture 
considered in this paper is summarized, so as to clearly 
identify where the spectrum analytics for failure detection and 
identification should be placed. Section III focuses on the 
proposed method studied in this paper; the method is based on 
the combined application of a classifier and failure magnitude 
estimators. Section IV presents representative results from 
realistic scenarios, where the performance of the proposed 
method is evaluated. Finally, Section V concludes the paper. 
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II. OPTICAL SPECTRUM ANALYSIS AND MDA ARCHITECTURE 

In this section, we first introduce the features that are used 
to analyze the optical spectrum of a given signal and that 
support detecting and identifying filter failures. Next, useful 
ML algorithms for failure detection and identification are 
briefly introduced. Finally, the MDA architecture supporting 
data analytics distribution is presented highlighting the 
placement of the module for filter failure detection and 
identification. 

A. Optical Spectrum and Filter Failures 

Fig. 1 shows an example of the optical spectrum of a 
100Gb/s DP-QPSK modulated signal. By inspection, we can 
observe that a signal is properly configured when: i) its central 
frequency is around the center of the allocated frequency slot; 
ii) its spectrum is symmetrical with respect to its central 
frequency; and iii) the effect of filter cascading is limited to a 
value given by the number of filters that the signal has 
traversed. However, when a filter failure occurs, the spectrum 
is distorted, and the distortion can fall into two categories: i) 
the optical spectrum is asymmetrical as a result of one or more 
filters are misaligned with respect to the central frequency of 
the slot allocated for the signal (filter shift, FS) and ii) the 
edges of the optical spectrum look excessively rounded 
compared to the expected considering the number of filters; it 
is a consequence of the filter’s bandwidth being narrower than 
the slot width allocated for the signal (filter tightening, FT). 

In order to detect the above distortions, an optical signal 
(which formally consists of an ordered list of frequency-power 
(<f, p>) pairs) can be processed to compute a number of 
relevant signal points that facilitate its diagnosis. Before 
processing an optical spectrum acquired by an OSA, the 
spectrum is equalized by setting its maximum power to 0 
dBm. Next, a number of signal features are computed as 
follows: 
 equalized noise level, denoted as sig (e.g., -60dB + 

equalization level), 
 edges of the signal computed using the derivative of the 

power with respect to the frequency, denoted as ∂, 
 the mean (μ) and the standard deviation (σ) of the central 

part of the signal computed using the edges from the 
derivative (fc_∂±Δf), 

 a family of power levels computed with respect to μ minus 
kσ, denoted as kσ, 

 a family of power levels computed with respect to μ minus 
a number of dB, denoted as dB. 

Using these power levels, a couple of cut-off points can be 
generated and denoted as f1(·) and f2(·) (e.g., f1sig, f1∂, f1dB, f1kσ). 
Besides, the assigned frequency slot is denoted as f1slot, f2slot. 
Combining the above, other features are computed as linear 
combinations of the relevant point focus on characterizing a 
given optical signal; they include: 
 bandwidth, computed as bw(·)=f2(·)-f1(·), 
 central frequency, computed as fc(·)=f1(·)+0.5*bw(·), 
 symmetry with respect to a reference (frequency slot or 

derivatives), computed as sym(·)-ref=(f1(·)-f1ref)-(f2ref-f2(·)). 
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Fig. 1. Example of optical spectrum and signal features. 

These features are used as input for the subsequent failure 
detection and identification modules. 

Although relevant points have been computed from an 
equalized signal, note that signal distortion due to filter 
cascading effect has not been corrected yet. As 
abovementioned, this effect might induce to a wrong diagnosis 
of a filter problem for a normal signal. In order to overcome 
this drawback, we apply a correction mask to the measured 
relevant points to correct such distortions. Correction masks 
can be easily obtained by means of the theoretical signal 
filtering effects or experimental measurements taken for a 
distinct number of cascaded filters. Every time a diagnosis is 
started, the specific correction mask considering the actual 
number of cascading filters that the signal traverses is used to 
correct the relevant points. 

These two different filter failures are illustrated in Fig. 2, 
where the solid line represents the optical spectrum of the 
normal signal expected at the measurement point and the solid 
area represents the optical spectrum of the signal with failure. 
Note that the expected signal is the signal used for the 
correction mask. In the case of filter shift, a 10 GHz shift to 
the right was applied (Fig. 2a), whereas the signal is affected 
by a 20GHz FT (Fig. 2b). 

B. ML algorithms for failure detection and identification 

Generally speaking, the term machine learning (ML) 
denotes a computer science field grouping algorithms for data 
analysis able to learn and make predictions from data [8]. In 
supervised learning, the ML algorithm is first trained with 
labeled data to learn a general rule that maps inputs to outputs. 

Two useful ML algorithms for failure detection and 
identification are classification and regression. In  
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Fig. 2. Example of filter failures considered in this paper: FS (a) and FT (b).  
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classification, the objective is to classify unknown received 
data, e.g., an optical signal, and decide whether the signal 
belongs to the normal class, the FS class, or the FT class. In 
regression, the objective is to predict a behavior; e.g., 
regression can be used to estimate the magnitude of a failure. 

Although several ML algorithms are suitable for the same 
output, choosing the best one is a problem-dependent decision 
where their performance needs to be studied for the specific 
case. Regarding classification, different ML methods are 
available in the literature, e.g., decision trees (DT) and support 
vector machines (SVM). A DT is a hierarchical tree structure 
that models the relationships between the features and the 
potential outcomes. DTs use a structure of branching decisions 
and leaves that represent the different class labels. An SVM is 
a binary classification technique; in the training phase, the 
input data is separated into groups of similar features by the 
computation of a boundary, called hyperplane, that better 
separates the two considered classes. As for prediction, one of 
the most popular algorithms is linear regression, which uses 
observations to find the best polynomial fitting for predictions. 

C. Monitoring and Data Analytics Architecture 

Let us now present the distributed MDA architecture 
considered in this paper, which consists of two components: 
the MDA agent and the controller (Fig. 3). The architecture is 
based on UPC’s MDA platform named CASTOR [5], [6]. 

The MDA agent is directly connected to one or more local 
network nodes through an interface for configuration and 
another for monitoring and telemetry. The agent includes a 
local Knowledge Discovery from Data (KDD) module to 
enable local data analysis thus, reducing anomaly or failure 
detection times [4]; to this end, the KDD module contains 
KDD applications in charge of handling and processing data 
records. A KDD manager is the entrance point for KDD 
applications; it receives monitoring data records and delivers 
them to the corresponding KDD application. In addition, the 
MDA agent includes a local configuration module that enables 
local control loops implementation, i.e., applying local node 
re-configuration/re-tuning based on the results of the data 
analysis. 

The MDA controller is a centralized system that collects 
monitoring data and notifications from the MDA agents and 
connects to the SDN controller to keep a synchronized a local 
copy of operational databases, e.g., topology and connections, 
as well as to keep it informed about any event detected in the 
network. The MDA controller exposes an IPFIX interface to 
the MDA agents so as to collect monitoring data records and 
notifications; received data is stored into a collected repository 
based on a scalable multi-master database. A process manager 
module is notified, and the corresponding KDD process is 
executed. Additionally, the MDA controller manages the 
configuration of the MDA agents, including KDD applications 
and OPs. 

The role of the MDA agent is many-fold; apart from OP 
management, monitoring data received from active OPs can be 
aggregated before being sent toward the MDA controller. On 
the other hand, KDD applications continuously analyze  
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Fig. 3. CASTOR MDA architecture and interfaces. 

measurements collected from OPs and send notifications 
toward the MDA controller in case of detecting anomalies, 
degradations or failures. Therefore, the MDA agent is the 
perfect place where the algorithm for filter failure detection 
and identification can be placed. In such case, the optical 
spectrum acquired by the local OSA(s) are periodically 
received through the IPFIX interface of the MDA agent. The 
algorithm for filter failure detection and identification receives 
the spectrum for every particular signal in the optical band 
and, in the case of detecting a failure, its class together with its 
estimated magnitude is reported to a hypothetical failure 
localization algorithm located in the MDA controller. 

III. PROPOSED METHODS FOR FILTER FAILURE DETECTION 

AND IDENTIFICATION 

In this section, we define two alternative classifiers for filter 
failure detection and identification based on the features 
defined in the previous section. Additionally, we study 
whether transforming features would improve classification 
accuracy. Once the optical spectrum of a signal has been 
acquired in an OP, the features are extracted and corrected 
applying the specific correction mask that corrects filter 
cascading effects for the number of filters that the signal has 
traversed from the transmitter to the OP. Next, failure analysis 
can be carried out; Fig. 4 summarizes the workflow that 
returns the detected class of the failure (if any) and its 
magnitude. 

The first alternative classifier is based on DTs, whereas the 
second one selects SVMs. Both classifiers aim at identifying 
whether a filter failure is affecting a connection and if so, 
which is the type of failure: FS or FT. In the case that a failure  
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Fig. 4. Considered workflow for failure detection and identification. 

has been detected, its magnitude needs to be estimated. Two 
filter failure magnitude estimators can be called depending on 
the detected failure; both are based on linear regression. 

Regarding the feature transformation block, for the sake of 
simplicity, we consider the magnitude of the failures as 
additional features for training the classifiers, so we use the 
magnitude estimator before a failure has been detected. In this 
way, original features are linearly combined to create new 
ones that might aggregate information in the hope of 
improving classification accuracy. 

Let us now get insight about the training process of the 
classifiers (see pseudocode in Table I). The algorithm receives 
a dataset of labeled examples that is firstly balanced by adding 
copies of instances from the under-represented class to have 
the considered classes (normal, FS, FT) equally represented 
(line 1 in Table I). A set of configurations that contain specific 
parameters for the classification algorithm selected will be 
used during the training process. The parameters considered to 
fit DTs are the number n of observations per leaf, for every n a 
DT model is obtained. As for SVM fitting the parameters are 
the degree of the polynomial kernel (kernelDegree) for 
complexity control and the cost of misclassifying 
(misClassCost) for the size of the SVM. For every 
configuration, a number of randomly-generated splits of the 
data set for training and testing will be performed. To store the 
goodness of each configuration, the GoC array will be used in 
the rest of the algorithm and it is firstly initialized (line 2). 
Next, a new dataset split is generated, where the training set is 
used for fitting a model for the classifier with the specific 
selected configuration (lines 3-7). Once a model is computed, 
predictions using the training and testing data set are carried 
out (lines 8-9); the training and testing errors between the 
model prediction and the actual values are stored in the GoC 
array together with the current configuration parameters (lines 
10-13). Finally, the results obtained for the different 
configurations and training/testing data splits are evaluated to 
select the configuration with minimum error (line 14). Such 
 

Table I. General classification training algorithm pseudocode 

INPUT dataset, Configs, maxSplits 
OUTPUT model 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

dataset←balanceClassesByReplication(dataset) 
for each config in Configs do initialize GoC[config] 
for i=1..maxSplits do 

<trainingSet,testingSet>←randomSplit(dataset) 
initialize configParams 
for each config in Configs do 

model ← fit(trainingSet, config) 
errorTraining ←predict(model, trainingSet) 
errorTesting ←predict(model, testingSet) 
gocConfig ← GoC[config].addNew() 
gocConfig.configParams ← config.params 
gocConfig.errorTraining ← errorTraining 
gocConfig.errorTesting ← errorTesting 

bestConfig←computeBestConfig(GoC) 
return fit(dataset, bestConfig) 
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Fig. 5. VPI setup (a) and correction mask of bw-3dB of the setup (b) 

configuration is eventually used to fit a model using the whole 
dataset to improve the algorithm performance (line 15). 

IV. ILLUSTRATIVE RESULTS 

In this section, we numerically compare the different failure 
identification classifiers and feature transformation described 
in the previous section. Let us begin by describing the 
transmission test-bed modeled in VPI Photonics (shown in 
Fig. 5a) that we use to generate the optical spectrum database 
required for training and testing the proposed algorithms. In 
the transmitter side, a 30 GBd DP-QPSK signal is generated. 
The signal passes through 8 single mode fiber spans. After 
each span, an optical amplifier compensates for the 
accumulated attenuation of the fiber. Each node is modeled 
with two 2nd order Gaussian filter emulating optical switching 
functionality performed by WSSs; filters bandwidth is set to 
37.5 GHz, leaving 7.5 GHz as a guard band for the lightpath. 
Finally, the DP-QPSK signal ends in a coherent receiver that 
compensates for the impairments introduced throughout the 
transmission. One OSA per node, configured with 625 MHz 
resolution, is considered to monitor the optical spectrum of the 
lightpath. As previously discussed, a correction mask should 
be considered for the features affected by filter cascading 
(these features get reduced/increased while passing through 
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Fig. 6. Accuracy of the proposed methods for identifying FS (a) and FT (b), 

and BER in terms of failure magnitude of FS (c) and FT (c). 

WSSs). Fig. 5b shows the amount of reduction in the 
magnitude of bw-3dB feature and the corresponding correction 
mask, obtained by fitting a 2nd order polynomial. 

In this study, we focus on the cases where failure happens 
just at the 1st node. Then, in order to emulate failure scenarios, 
we modify the characteristics of the 2nd WSS of the 1st node; 
its bandwidth and central frequency are modified to model FT 
and FS failures, respectively. Utilizing this setup, we collect 
large database of failure scenarios with different magnitude 
(magnitude of 1 to 15 GHz for FT and 1 to 8 GHz for FS, both 
with 0.25 GHz step-size.). Let us firstly focus on detecting the 
failure at the node where it happens, which requires one OSA 
per node. We use accuracy (defined as the number of correctly 
detected failures over the total number of the failures) as a 
metric to compare the performance of the different options in 
the workflow. 

Fig. 6a and Fig. 6b show the accuracy of identifying FS and 
FT in terms of the magnitude of the failure, respectively; every 
point in Fig. 6a-b is obtained by considering all the 
observations belonging to that particular failure magnitude and 
above. This representation reveals the accuracy of the 
proposed classifiers (without the feature transformation block) 
while considering failures with magnitude above certain 
thresholds. For instance, the accuracy of detecting FS in a 
dataset comprises observations larger than 1 GHz (in our case 
it comprises of failures up to 8 GHz in which there are equal 
number of observations per each magnitude) is around ~96% 
for SVMs, while it hardly approaches 89% for DTs. On the 
other hand, the accuracy of SVMs becomes 100% for failures 
larger than 5 GHz, while this level of accuracy for DTs is 
achieved for failures larger than 6 GHz. 

To better relate this accuracy to the performance of the 
optical transmission system, we can look into the details of the 
BER of the signals. Fig. 6c shows the BER evolution for 
increasing magnitude of FS. It is shown that the proposed 
methods can perfectly detect a FS problem ahead of exceeding 
the FEC-threshold of BER (10-3). Now let us focus on the FT 
case. Note that the magnitude of filter tightening is defined as 
the difference between the ideal bandwidth of the filter (equal 
to 37.5 GHz) and its bandwidth during the failure. As shown 
in Fig. 6b, the best accuracy of the proposed classifiers for low 
magnitudes (below 6 GHz) is around 80% (achieved for 
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Fig. 7. Smallest failure magnitude for 100% classification accuracy vs. the 
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SVMs), which is due to the fact that the shape of the optical 
spectrum is quite similar to the normal scenario, making it 
very challenging for the classifier to distinguish. This is in 
contrast to the case of FS, which its impact is more evident 
from the very beginning due to its asymmetric behavior with 
respect to the optical spectrum. As shown in Fig. 6b, for the 
magnitudes above 9 GHz, exploiting SVMs, the classifier 
perfectly detects the failed lightpaths. However, this level of 
perfect accuracy is achieved for magnitudes above 10.5 GHz 
for the DTs. If we look at the BER performance of the system, 
it can be understood that the FEC-threshold limit of BER is 
exceeded for magnitude around 10 GHz, meaning that yet by 
exploiting SVMs, we are able to detect a failure ahead of 
disruption of the connection. Note that, the BER values 
reported in the paper are obtained in our VPI setup including 
18 WSSs without power tuning of the components to increase 
the OSNR. In practice, better BER performance can be 
achieved with the help of more sophisticated DSP techniques 
and at the expense of some level of OSNR penalty [9], 
meaning that the detection threshold of 100% accuracy can be 
even further away from the FEC-limit of BER. 

In the second part of the analysis, we focus on detecting the 
failures in some nodes after the point where the failure 
happens, showcasing the robustness of the proposed methods 
with respect to the evolution of the optical signal along the 
transmission line. In addition, by following this approach, the 
number of utilized OSAs in the network can be reduced. Fig. 7 
shows the minimum magnitude after which the accuracy of 
classifiers remains 100% in terms of the location of OSA 
compared to the point that failures happen; 0 on the x-axis 
means that OSA is placed at the node where the failure 
happens (N1 in Fig. 5), while 7 means that is placed 7 nodes 
away from the location of the failure (N8 in Fig. 5). It can be 
understood that the SVM-based classifier is robust regardless 
of the location of the OSA and it perfectly detects the failures 
above a magnitude threshold where the FEC-limit of BER is 
not yet exceeded. Even though the DT-based classifier shows 
an acceptable performance for FS failures up to 3 nodes 
distance from the location of the failure, it fails when 
considering FT failures. 

Once the failures are detected, filter shift estimator (FSE) 
and filter tightening estimator (FTE) can be launched to return 
the magnitude of the failures; estimators are based on linear 
regression. Estimated values of FS and FT with respect to their 
expected values are illustrated in Fig. 8a and Fig. 8b, 
respectively. As shown, the estimators can predict the 
magnitude of failures with very high accuracy, with mean 
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Fig. 9. Estimated FS vs estimated FT as a 2D vector space. 

square error (MSE) equal to 0.09091 and 0.00583 for FSE and 
FTE, respectively. 

In addition to the use of these estimators to explore the 
magnitude of the failures, they can be used in the feature 
transformation step as anticipated in Section III. In fact, the 
output of FSE and FTE can be considered as two principal 
components of an imaginary two-dimensional (2D) vector 
space as shown in Fig. 9. In such space, FS and FT failures 
evolve in different directions of the vector space. As 
illustrated in Fig. 9, the observations belonging to normal 
operation and the small magnitudes of the failures coincide. 
However, they become perfectly distinguishable as the 
magnitude of failures increase. 

Let us evaluate the benefits of exploiting the outputs of FSE 
and FTE estimators as additional features for training the 
classifiers; Fig. 10 presents the obtained results. For the sake 
of conciseness, we group the magnitudes into three groups of 
low (L), medium (M), and high (H) magnitudes, instead of 
reporting all of them independently. Regarding the location of 
the OSAs, we report just three locations. Analyzing Fig. 10a, 
one can realize that the accuracy of DTs can be substantially 
improved, notably for low and medium magnitude, when 
using the estimations of FSE and FTE as new features. 
Additionally, it makes the classifier based on DT more robust 
while using OSAs far away from the location of the failures. 
However, it yet cannot outperform the classifier based on 
SVMs, even with these additional features. We also see that 
adding these new features does not enhance the performance 
of SVMs, revealing that such classifier can internally exploit 
the primary features to the maximum extend (Fig. 10b). 
Therefore, the classifier based on SVMs does not require an 
additional preprocessing step to generate more features; note 
that the magnitude of the failures are just linear combinations 
of primary features. Conversely, the substantial improvement 
seen in the DT classifier reveals that DTs cannot maximally 
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Fig. 10. Comparison of the classifiers with and without additional features. 

exploit the information carried by the primary features and 
requires some pre-processing to grasp more information, 
which is a weakness of DTs compared to SVMs. 

V. CONCLUDING REMARKS 

In this work, we have studied the benefits of exploiting 
OSAs for identification and localization of filter related 
failures. Considering the classification methods, we have 
compared the performance of two different algorithms, based 
on DTs and SVMs, in terms of their accuracy in the detection 
of the failures. Additionally, we have evaluated their 
robustness with respect to the evolution of the optical signal 
along the transmission line. 

The DT-based approach shows a reasonable performance if 
it follows a pre-processing step, aiming at generating more 
useful features. Otherwise, it performs weakly and lacks 
robustness. On the other hand, the classifiers based on SVMs 
have shown significant performance in detecting critical filter 
related failures at any point along the route of a lightpath 
without any pre-processing step. In addition, it benefits from 
very high robustness with respect to the evolution of signal 
along the transmission line. This robustness relaxes the 
requirement of deploying one OSA per node for spectrum 
monitoring, which in turn results in a significant reduction of 
the number of OSA used in the network.  
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