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Abstract—We propose a novel artificial intelligence (AI) as-
sisted framework to realize virtual network (VNT) slicing in an
inter-datacenter optical network (IDCON), where the infrastruc-
ture provider (InP) performs resource advertising and pricing
based on deep reinforcement learning (DRL) and grants the vir-
tual network embedding (VNE) schemes calculated distributedly
by the tenants. Simulation results confirm that compared with
the traditional centralized VNT slicing framework, our proposal
can not only make the InP more profitable but also relieve its
computation complexity effectively.

Index Terms—Inter-DC optical networks, Virtual network
slicing, Knowledge-defined networking, Artificial intelligence.

I. INTRODUCTION

Recently, the omnipresent requirements of cloud comput-

ing are demanding an unprecedented amount of data to be

transferred among datacenters (DCs) [1]. Therefore, the archi-

tecture of inter-DC optical networks (IDCONs) [2] and the

network virtualization schemes in them [3] have received in-

tensive research interests. With network virtualization, service

providers (SPs) (i.e., tenants) are allowed to lease substrate

network (SNT) resources from an infrastructure provider (InP)

and build various virtual networks (VNTs) in a “pay as you

use” manner [4, 5]. This is extremely useful in an IDCON,

since the InP can allocate bandwidth and IT resources dynam-

ically and adaptively to slice VNTs for the tenants and help

them satisfy the time-varying and diversified demands from

their services [6]. Hence, a win-win situation can be achieved,

i.e., the InP’s substrate resource utilization can be improved

and the tenants’ time-to-market can be reduced.

Note that, for VNT slicing, the InP of an IDCON usually

needs to 1) select a substrate DC node to host each virtual node

(VN) of the VNT for satisfying the IT resource requirement

(i.e., the node mapping), and 2) reserve sufficient optical

spectra on a substrate path to carry each virtual link (VL)

between a VN pair for satisfying the bandwidth requirement

(i.e., the link mapping), which is also known as virtual network

embedding (VNE) [7]. Previously, the problem of VNE has

already been studied intensively in various network scenarios

and with different optimization objectives [7–10], and related

network system prototypes have been experimentally demon-

strated in [11–13]. However, all these previous investigations

assumed that the InP is in charge of VNT slicing solely

without any involvement of the tenants, and it calculates
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Fig. 1. Proposed framework for distributed tenant-driven VNT slicing.

VNE schemes based on current network status without the

intelligence for forecasting. This would not only complicate

the network control and management (NC&M) of the InP but

also limit the cost-effectiveness of VNT slicing. For instance,

it is known that the energy efficiency or the cost-effectiveness

of an IDCON can be improved with network-wide resource

consolidation, i.e., consolidating computing tasks on fewer

DCs and grooming inter-DC traffic to fewer fiber links [14,

15]. Nevertheless, in case of VNT slicing, the InP can hardly

realize the most effective resource consolidation, if it cannot

directly forecast future VNT requests from the tenants or

indirectly affect their behaviors on submitting VNT requests.

The aforementioned issue with existing approaches moti-

vates us to revisit the problem of VNT slicing in IDCONs.

Specifically, inspired by the idea of knowledge-defined net-

working (KDN) [16], we propose to add three new mecha-

nisms into the framework of VNT slicing to make it operate

in a distributed tenant-driven manner and more profitable:

• The InP performs resource advertising and pricing to tell

the tenants about the DCs and fiber links that can be

used to embed their VNTs and the cost of using the

corresponding IT and bandwidth resources1.

1Here, the advertised resources might not be all the available ones in the
IDCON. For the purpose of resource consolidation, the InP may choose to
hide certain resources from advertising.
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• Based on the advertisement from the InP, each tenant

distributedly calculates the VNE scheme for its VNT

with the lowest cost, and determines whether the price

is affordable. If yes, it will submit the scheme to the InP.

• The InP collects all the requests from the tenants, grants

them based on current network status, calculates the profit

from the VNT slicing, and feeds all the information

into an artificial intelligence (AI) module based on deep

learning to obtain the strategy of the next round of

resource advertising and pricing for maximizing its profit.

As shown in Fig. 1, with the new mechanisms, VNT slicing

is realized in a distributed and thus much more time-efficient

way, and the InP would not be directly involved in the

computation of VNE schemes. Hence, the InP’s intelligence

lies in being able to maximize the profit of VNT slicing by

leveraging the AI-assisted resource advising and pricing. In

this work, based on the framework in Fig. 1, we first lay out

the network model and design an integer linear programming

(ILP) model for each tenant to distributedly calculate the VNE

scheme for its VNT with the lowest cost. Then, we study how

to perform AI-assisted resource advertising and pricing in the

InP for profit maximization. Specifically, we design a deep

reinforcement learning (DRL) based algorithm to help the InP

learn the relation between the strategy of resource advertising

and pricing and the profit from VNT slicing. In other words,

the DRL-based algorithm enables the InP to analyze the

tenants’ behaviors on distributed VNE computation for making

wise decisions on resource advertising and pricing.

The rest of the paper is organized as follows. We formulate

the problem in Section II. The DRL-based resource advertising

and pricing algorithm is proposed in Section III. Section

IV evaluates the performance of our proposal. Finally, we

summarize the paper in Section V.

II. PROBLEM FORMULATION

A. Network Model of IDCON

We model the topology of an IDCON as G(V,E), where

V and E denotes the sets of nodes and fiber links in it,

respectively. Note that, there are actually two types of nodes in

the IDCON, as shown in Fig. 2(a). Each of the first type ones

consists of a local DC and an optical switch (OXC), which

is referred to as an edge node and included in set V E . The

second type ones are intermediate nodes, each of which only

includes an OXC and is included in set V I . Apparently, we

have V E ∩ V I = ∅ and V E ∪ V I = V . In the IDCON, each

DC offers IT resources and each fiber link provides bandwidth,

for VNT slicing. To facilitate distributed tenant-driven VNT

slicing, the InP needs to perform resource advertising and

pricing periodically. An example of the resource advertising

is illustrated in Fig. 2(b), where for cost saving, the InP

only turns on partial of the network elements in the IDCON

and advertises the resources on them. Meanwhile, in order to

maximize its profit and encourage the tenants to use substrate

resources in a balanced manner, the InP needs to price the

advertised resources properly. In the next section, we will

design a DRL-based algorithm to help the InP achieve this.
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Fig. 2. Example on distributed tenant-driven VNT slicing, (a) IDCON, (b)
Resource advertisement from InP, and (c) VNE schemes computed by tenants.

TABLE I
NOTATIONS FOR RESOURCE COST MODEL

Notation Explanation

IDCON:

vEi the i-th edge node in V E

vIi the i-th intermediate node in V I

E(v) the set of links that connect to node v ∈ V
Rc

i the amount of available IT resources in the DC of vEi
Rb

e the available bandwidth on a fiber link e ∈ E

Edge Node vEi ∈ V E :

ĊE
o,i the base cost of the OXC in vEi if it is working

CE
o,i the unit cost of switching capacity of the OXC in vEi

ĊE
d,i

the base cost of the DC in vEi if it is working

CE
d,i

the unit cost of IT resources in the DC in vEi
Intermediate Node vIi ∈ V I :

ĊI
o,i the base cost of the OXC in vIi if it is working

CI
o,i the unit cost of switching capacity of the OXC in vIi

Fiber Link e ∈ E:

Ċe the base cost of e if it is active with traffic
Ce the unit cost of bandwidth usage on e
C̃e the merged unit cost of bandwidth usage on e

To assist the resource advertising and pricing, we define a

few notations for the cost model of resources, which are listed

in Table I. Here, for each network element in the IDCON (i.e.,

a DC, an OXC or a fiber link), we assume that the cost of using

it consists of a static component (i.e., the base cost of turning

it on) and a dynamic component (i.e., the one that increases

linearly with the actual resource usage on it). Note that, since

the data transmission on fiber link e uses both the link and

the two OXCs in its end-nodes, we combine the unit costs of

bandwidth usage on them to get the merged unit cost C̃e as

C̃e = Ce +
∑

{vE
i

: e∈E(vE
i
)}

CE
o,i +

∑

{vI
i
: e∈E(vI

i
)}

CI
o,i. (1)

With this cost model, the InP needs to determine its strategy of

resource advertising and pricing for profit maximization, and

the strategy can be denoted with the variables defined in Table

II. Here, for simplicity, we also get the merged unit price of
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bandwidth usage on fiber link e, which is

P̃e = Pe +
∑

{vE
i

: e∈E(vE
i
)}

PE
o,i +

∑

{vI
i
: e∈E(vI

i
)}

P I
o,i. (2)

TABLE II
VARIABLES DEFINED FOR RESOURCE ADVERTISING AND PRICING

Variable Definition

xE
o,i

Boolean variable that equals 1 if the OXC in edge node vEi
is advertised (i.e., turned on) by the InP, and 0 otherwise.

xE
d,i

Boolean variable that equals 1 if the DC in edge node vEi
is advertised by the InP, and 0 otherwise.

xI
o,i

Boolean variable that equals 1 if the OXC in intermediate

node vIi is advertised by the InP, and 0 otherwise.

ye
Boolean variable that equals 1 if fiber link e is advertised
by the InP, and 0 otherwise.

PE
o,i

Positive real variable that represents the unit price of

switching capacity of the OXC in edge node vEi .

PE
d,i

Positive real variable that represents the unit price of

IT resources in the DC in edge node vEi .

P I
o,i

Positive real variable that represents the unit price of

switching capacity of the OXC in intermediate node vIi .

Pe
Positive real variable that represents the unit price of
bandwidth usage on fiber link e.

P̃e
Positive real variable that represents the merged unit price of
bandwidth usage on fiber link e.

B. Distributed Tenant-driven VNT Slicing

We assume that there are K pending VNT requests from

the tenants. The k-th VNT request can be represented as

Gr
k(V

r
k , E

r
k, P̂

r
k ), where V r

k and Er
k are the sets of virtual

nodes (VNs) and virtual links (VLs), respectively, and P̂ r
k is

the highest cost that the tenant can afford. Here, each VN

vrk,i ∈ V r
k has an IT resource requirement of Rr

k,i, and it

should be mapped onto an edge node in V E with sufficient IT

resources in its DC. Note that, for node mapping, a tenant may

have a location constraint from its services, i.e., its VNs should

only be mapped onto a subset of edge nodes in the IDCON to

ensure certain access latency and/or coverage of its services

[10]. We denote the subset of the edge nodes that VN vrk,i
can be mapped onto as V E

k,i and have V E
k,i ⊆ V E . Each VL

e ∈ Er
k has a bandwidth requirement of Rr

k,e, and it should

be mapped onto a substrate path with sufficient bandwidth.

Based on the resource advertisement from the InP, the tenant

calculates the VNE scheme for its VNT request with the lowest

cost, as shown in Fig. 2(c). This can be done by leveraging the

ILP model listed in Table III. Note that, in Eq. (9), E(v)− and

E(v)+ mean the sets of egress and ingress links to node v,

respectively. After obtaining the VNE scheme by solving the

ILP, the tenant checks whether the scheme’s cost is affordable

(i.e., not exceeding P̂ r
k ). If yes, the tenant will submit the VNE

scheme and the corresponding payment to the InP. Otherwise,

it will cancel its VNT request temporarily.

For the VNT requests submitted to the InP, we denote the

set of their indices as K ′. Then, based on the payments from

the tenants and the corresponding resource costs, the InP cal-

culates the profit from each VNT request (i.e., payment minus

total resource cost), sort the requests in descending order of the

profits from them, and grant them one-by-one in sorted order.

Note that, in this process, a VNT request can be blocked due

to insufficient resources in the IDCON. Hence, the granted

VNT requests may be a subset of the submitted ones, and the

set of their indices can be denoted as K ′′. Finally, with K ′′,

the InP can calculate its profit from this round of VNT slicing,

which is denoted as P . According to Table II, the strategy of

resource advertising and pricing can be represented with the

advertisement matrix A = [{xE
o,i}, {x

E
d,i}, {x

I
o,i}, {ye}] and

the price matrix P = [{PE
o,i}, {P

E
d,i}, {P

I
o,i}, {Pe}, {P̃e}]. We

can see that the profit P is actually a function of A and P,

i.e., P = f(A,P). In the next section, we will design a DRL-

based algorithm to let the InP learn P = f(A,P) intelligently.

TABLE III
ILP MODEL FOR TENANT TO CALCULATE VNE SCHEME OF THE k-TH

VNT REQUEST

Variable Definition

xi,i′
Boolean variable that equals 1 if the i-th VN vr

k,i
in V r

k
is

mapped onto the i′-th edge node vE
i′

in V E , and 0 otherwise.

ye,e′
Boolean variable that equals 1 if VL e ∈ Er

k
goes through

fiber link e′ ∈ E, and 0 otherwise.

Objective:

Minimize




∑

vr
k,i

∈V E
k,i

∑

vE
i′

∈V E

PE
d,i′ · xi,i′ · R

r
k,i+

∑

e∈Er
k

∑

e′∈E

P̃e′ · ye,e′ ·R
r
k,e



 .

(3)

Node Mapping Constraints:

xi,i′ ≤ xE
o,i′ , ∀vrk,i ∈ V r

k , vEi′ ∈ V E
k,i, (4)

xi,i′ = 0, ∀vrk,i ∈ V r
k , vEi′ 6∈ V E

k,i, (5)

∑

vE
i′

∈V E
k,i

xi,i′ = 1, ∀vrk,i ∈ V r
k , (6)

xE
o,i′ + xi,i′ − 1 ≤ xE

d,i′ , ∀vrk,i ∈ V r
k , vEi′ ∈ V E

k,i. (7)

Link Mapping Constraints:

ye,e′ ≤ ye′ , ∀e ∈ Er
k, e′ ∈ E, (8)

∑

e′∈E(vE
i′
)−

ye,e′ −
∑

e′∈E(vE
i′
)+

ye,e′ = xi,i′ − xj,i′ ,

{e : e = (vrk,i, v
r
k,j), e ∈ Er

k}, ∀vEi′ ∈ V E .

(9)

Resource Constraints:

∑

vr
k,i

∈V r
k

xi,i′ ·R
r
k,i ≤ Rc

i′ , ∀vEi′ ∈ V E , (10)

∑

e∈Er
k

ye,e′ · R
r
k,e ≤ Rb

e′ , ∀e′ ∈ E. (11)

III. AI-ASSISTED RESOURCE ADVERTISING AND PRICING

We first design an evaluate function Q̂(·) that can rank net-

work elements in the IDCON to get the advertisement matrix
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A, and then propose a DRL-based algorithm to parameterize

Q̂(·) such that the price matrix P can be learned iteratively.

A. Design of Evaluation Function Q̂(·)

The evaluation function Q̂(·) should be able to rank network

elements in the IDCON such that if the InP turns down them in

the sorted order (i.e., maximizing Q̂(·) each time), its profit can

be maximized. We formulate Q̂(·) as Q̂(A, nd; Θ,P), which

is a function of A and nd with parameters Θ and P, and nd is

the network element (i.e., a DC, an OXC or a fiber link) to be

shut down and removed from the upcoming advertisement.

Supposing that Q̂(·) has already been parameterized with

known Θ and P, the InP can use the simple procedure in

Algorithm 1 to obtain the advertisement matrix A.

Algorithm 1: Determining Advertisement Matrix A with

Evaluation Function Q̂(A, nd; Θ,P)

1 initialize A as turning on all the elements in G(V,E);
2 calculate the InP’s profit P based on A and P with the

approach in Section II;

3 P ′ = 0;

4 while P > P ′ do

5 P ′ = P , nd = argmax
nd∈A

Q̂(A, nd; Θ,P);

6 shut down nd and update A accordingly;

7 calculate the InP’s profit P based on A and P;

8 end

We design a recursive structure [17] for Q̂(·) to capture

the features of each network element, by considering both

the characteristics of the IDCON’s topology G(V,E) and

the element’s relation with other elements in the IDCON.

Specifically, at the t-th recursion, the features of nd are

represented by a (2|V E |+|V I |+|E|)-dimensional vector ̟
(t)
nd ,

and the recursive relations are defined as follows.

̟(t)
nd

=





f0(θ1 · xE
o,i + θ2 ·A1 + θ3 · f0(B1)), nd is the OXC in vEi ,

f0(θ1 · xE
d,i + θ2 ·̟

(t−1)

O(vE
i
)
), nd is the DC in vEi ,

f0(θ1 · xI
o,i + θ2 ·A2 + θ3 · f0(B2)), nd is the OXC in vIi ,

f0(θ1 · ye + θ2 ·A3 + θ3 · f0(B3)), nd is fiber link e,

where f0(x) = x if x ≥ 0, and 0 otherwise, and the parameters

{Am, Bm : m ∈ [1, 3]} are calculated as follows




A1 = ̟
(t−1)

D(vE
i

)
+

∑

nd∈N(vE
i

)

̟
(t−1)
nd

+
∑

nd∈E(vE
i

)

̟
(t−1)
nd

,

B1 =
∑

vE
j

∈N(vE
i

)

θ4 ·
(

P
E
o,j + P

E
d,j

)

+
∑

vI
j
∈N(vE

i
)

θ5 · P
I
o,j +

∑

e∈E(vE
i

)

θ6 · Pe,

A2 =
∑

nd∈N(vI
i
)

̟
(t−1)
nd

+
∑

nd∈E(vI
i
)

̟
(t−1)
nd

,

B2 =
∑

vE
j

∈N(vI
i
)

θ4 ·
(

P
E
o,j + P

E
d,j

)

+
∑

vI
j
∈N(vI

i
)

θ5 · P
I
o,j +

∑

e∈E(vI
i
)

θ6 · Pe,

A3 =
∑

{vE
i

: e∈E(vE
i

)}

̟
(t−1)

O(vE
i

)
+

∑

{vI
i
: e∈E(vI

i
)}

̟
(t−1)

O(vI
i
)
,

B3 =
∑

{vE
i

: e∈E(vE
i

)}

θ4 ·
(

P
E
o,i + P

E
d,i

)

+
∑

{vI
i
: e∈E(vI

i
)}

θ5 · P
I
o,i,

where N(v) returns the set of OXCs in adjacent nodes of node

v, and D(v) and O(v) return the DC and OXC in node v,

respectively. With T recursions, the features of each network

element are spread to those that are T hops away from it. Then,

the evaluation function Q̂(A, nd; Θ,P) can be formulated as

Q̂(A, nd; Θ,P) = θ⊤7 · f0







θ8 ·
∑

n
′
d
∈G

̟
(T )

n
′
d

, θ9 ·̟
(T )
nd







 , (12)

where Θ = {θi : i ∈ [1, 9]}.

B. DRL-based Algorithm to Parameterize Q̂(·)

We propose a DRL-based algorithm with the following

principle to parameterize Q̂(·), i.e., determining Θ and P.

• States: each state corresponds to a feasible A.

• Actions: an action is to shut down one network element

nd at the current state A.

• Rewards: the reward of an action at the current state A

is calculated as:

fr(A, nd) = f(A/nd,P)− f(A,P), (13)

where f(A,P) calculates the InP’s profit, and A/nd

means to shut down nd at state A.

Based on Eq. (13), we define an n-step-forward function

y =

n−1∑

i=0

fr(A
(t+i), n

(t+i)
d

) + β ·max
nd

[
Q̂(A(t+n), nd; Θ,P)

]
, (14)

where t is the index of the current iteration, A(t+i) and n
(t+i)
d

are the state and action at the (t+ i)-th iteration, respectively,

and β is a constant coefficient. Then, in the DRL, we try to

minimize the squared regression loss defined as

[
y − Q̂(A(t), n

(t)
d

; Θ,P)
]2

. (15)

Algorithm 2 shows the procedure of the proposed DRL-

based algorithm. In each round of training, we first create two

sets Γ and ∆ (Lines 2-3). The former is to store all the valid

training samples, and the latter is the training set with a fixed

size for an iteration. Line 4 initializes A
(1), and the for-loop

covering Lines 5-21 tries to shut down a network element

in each iteration. Here, to diversify the training samples, we

generate a random number ǫ ∈ [0, 1] (Line 6), and test whether

it is smaller than a preset threshold Th. If yes, the action

n
(t)
d is randomly selected within A

(t) (Line 8). Otherwise,

the action is determined according to the policy in Line 10.

Then, we get A(t+1) accordingly (Line 12) and calculate the

corresponding reward in Line 13. Due to the n-step-forward

function in Eq. (14), only when the iteration number is larger

than n, {A(t−n), n
(t−n)
d , fr(A

(t−n), n
(t−n)
d )} becomes a valid

sample. Hence, it is added into Γ in Line 15. Once there are

more than |∆| samples in Γ (Line 16), the training set ∆
can be formed by selecting |∆| samples from Γ randomly

(Line 17), and then the values of {Θ,P} are updated by

performing stochastic gradient descent (SGD) over Eq. (15)

for ∆ (Line 18). Finally, after M rounds of training, Algorithm

2 determines and returns the values of {Θ,P}.
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Algorithm 2: DRL-based Algorithm to Parameterize Q̂(·)

1 for each round j ∈ [1,M ] do

2 create a set Γ to store valid training samples;

3 create a training set ∆ with a fixed size;

4 initialize A
(1) as turning on all elements in G(V,E);

5 for each iteration t ∈ [1, 2|V E |+ |V I |+ |E|] do

6 generate a random real number ǫ ∈ [0, 1];
7 if ǫ ≤ Th then

8 select n
(t)
d randomly in A

(t);

9 else

10 n
(t)
d = argmax

nd∈A(t−1)

Q̂(A(t), nd; Θ,P);

11 end

12 get A(t+1) from A
(t) by removing n

(t)
d ;

13 calculate fr(A
(t), n

(t)
d ) with Eq. (13);

14 if t ≥ (n+ 1) then

15 {A(t−n), n
(t−n)
d , fr(A

(t−n), n
(t−n)
d )} → Γ;

16 if |Γ| ≥ |∆| then

17 select |∆| samples from Γ randomly to

form ∆;

18 update {Θ,P} by performing SGD over

Eq. (15) for ∆;

19 end

20 end

21 end

22 end

23 return {Θ,P};

IV. PERFORMANCE EVALUATION

We conduct numerical simulations to evaluate the proposed

framework with DRL-based resource advertising and pricing,

which run on a computer with 4.0 GHz Inter Core i7-6700K

CPU, 16 GB RAM and 11 GB NVIDIA GTX 1080Ti GPU.

The DRL-based algorithm is implemented with TensorFlow

1.4.1. The topology of the IDCON can take either the 8-node

or the NSFNET topologies in Fig. 3. The cost of resources are

uniformly distributed within [10, 30] units in both topologies.

Here, unit stands for a general currency unit. We generate each

VNT request in a way as: 1) the number of VNs is uniformly

distributed within [1, 5], 2) the subset of edge nodes that each

VN is location-constrained within is randomly selected, 3)

each VN pair is connected by a VL with a probability of

0.6, and 4) the highest cost that a tenant can afford is linearly

proportional to the total number of VNs and VLs, with a slope

uniformly distributed within [16, 116] and [50, 150] units in the

8-node and NSFNET topologies, respectively.

When training the proposed DRL-based algorithm, we use

M = 200 as the maximum number of training rounds, set

the number of VNT requests in each round as uniformly

distributed within [5, 45], and have |∆| = 5 as the number

of training samples. After the training is done, we compare

the proposed DRL-based algorithm with a centralized bench-

mark. The benchmark prices resources according to a normal

(a) 8-Node Topology

(b) 14-Node NSFNET Topology

Fig. 3. IDCON topologies used in simulations.
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Fig. 4. Results in 8-node topology.

distribution with mean µ and standard deviation σ equal to

{65.7, 26.8} and {123, 37.4} for the 8-node and NSFNET

topologies, respectively, and performs resource advertising in a

greedy manner. Specifically, in the benchmark, by estimating

the network element that can be shut down to bring in the

maximum profit gain, the InP removes selected network ele-

ments one-by-one from the upcoming resource advertisement

until its profit is maximized, and the whole process does not

consider any inputs from the tenants’. The simulations average

the results from 5 independent runs to get each data point.

Fig. 4 shows the results on the InP’s profit and the algo-

rithms’ average running time for the 8-node topology. We can

see that the proposed DRL-based algorithm achieves ∼14.56%
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Fig. 5. Results in the 14-node NSFNET topology.

more profit than the benchmark in all the cases. Meanwhile,

the DRL-based algorithm also consumes less running time

than the benchmark. Here, to achieve fair comparisons, the

running time of the DRL-based algorithm includes the training

time. This is because with the benchmark, the InP has to

calculate the VNE schemes for the VNT requests and deter-

mine the resource advertising scheme in a centralized manner,

while with the DRL-based algorithm, it only needs to perform

network advertising according to the trained evaluation func-

tion and grant the VNE schemes from the tenants based on

resource availability. Hence, the results in Fig. 4 verify that our

proposed framework can not only make the InP more profitable

but also relieve its computation complexity effectively.

Fig. 5 illustrates the results on the InP’s profit and average

running time in the NSFNET topology. We observe the similar

trends as in Fig. 4. Actually, as the IDCON’s size is larger,

the proposed DRL-based algorithm achieves a larger profit

increase over the benchmark, i.e., ∼58.40% on average. Since

with the benchmark, the InP does not consider the tenants’

inputs when determining resource advertising and pricing

schemes, its profit in Fig. 5(a) does not exhibit a stable trend.

Moreover, the centralized scheme of the benchmark does not

scale well with the problem’s size, and thus its running time

increases exponentially with the number of VNT requests in

Fig. 5(b). This makes our proposed framework’s advantage on

reduced time complexity much more significant.

V. CONCLUSION

We proposed a novel framework to realize VNT slicing

in an IDCON, where the InP performs AI-assisted resource

advertising and pricing and grants the VNE schemes calculated

distributedly by the tenants. Then, for the InP, we designed

a DRL-based resource advertising and pricing algorithm for

profit maximization. Simulation results confirmed that com-

pared with the traditional centralized VNT slicing framework,

our proposal can not only make the InP more profitable but

also relieve its computation complexity effectively. In the

future, we need to further study both the timing and methods

for predicting the tenant demands and their affordable prices

accurately.
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