
Virtual-Network-Function Placement For Dynamic
Service Chaining In Metro-Area Networks

Leila Askari, Ali Hmaity, Francesco Musumeci, Massimo Tornatore
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

E-mail: firstname.lastname@polimi.it

Abstract—The advent of new services with stringent require-
ments on bandwidth and latency has led to a downward curve
in per-user revenues of telecom operators. This has stimulated
a significant shift in the way operators provision their services,
moving from the utilization of dedicated and static hardware
to support network functions (as NATs, firewalls, etc.), to
the deployment of Virtual Network Functions (VNFs) in the
form of dynamically-reconfigurable virtual machines on low-
cost servers and switches. These VNFs must be chained together
and should be placed optimally to meet the Quality of Service
requirements of the supported services. This problem consists in
placing the VNFs and routing traffic sequentially among them
and is known as Service Chaining (SC). Solving this problem
dynamically based on how traffic evolves allows to achieve great
flexibility in resource assignment in the existing infrastructure
and to save operational expenditures. An effective algorithm for
dynamic SC must promote consolidation in VNF placement (it
is desirable to consolidate VNFs in the fewer possible number
of network nodes), while maintaining low blocking probability
and guaranteeing latency targets to the supported services. In
this paper we propose an algorithm which performs dynamic
SC in a metro-area network, while minimizing average number
of nodes required to host VNF instances as well as the blocking
probability. This algorithm can help telecom operators reduce
their operational expenditures up to 50% by activating less nodes
to host VNFs in the network, while maintaining an acceptable
level of blocking probability.

I. INTRODUCTION

Cost-effectively provisioning new services (as Augmented
Reality) that might require high bandwidth, or be latency
sensitive and have higher reliability requirements is a com-
plex challenge for operators. In response to this pressure,
the concept of Network Function Virtualization (NFV) has
attracted the attention of operators, as it enables to reduce
Capital Expenditures (CapEx) and Operational Expenditures
(OpEx) by virtualizing network functions (as NATs, firewalls,
etc.) using virtual machines (VMs) running on top of standard
servers and switches, by promoting resource sharing, and by
decreasing energy consumption thanks to the consolidation
of many network functions within few shared facilities. By
chaining these Virtual Network Functions (VNFs) together
(i.e, by placing VNFs and route traffic sequentially among
them), the operator can provide a specific service (e.g., Cloud
Gaming, VoIP, etc.) referred to as Service Chain (SC) [1] [2].

As NFV decouples network functions from hardware-based
network appliances, network operators, based on the current
situation of the network, in terms, e.g., of the amount of traffic
and type of SC requested by users, can activate VNFs (by

assigning resources to them) and deactivate them (by releasing
resources used by them) in different network nodes equipped
with processing units (identified to as “NFV-nodes”). In this
context, to provision a SC it is important to decide in which
network node to locate VNFs and how to route the traffic
among them, as a proper placement of the VNFs can lead
to efficient resource utilization and better Quality of Service
(QoS). Hence, network operators should use efficient dynamic
service chaining algorithms which, on one hand, help them
reduce the expenses by activating less VNFs on less nodes and,
on the other hand, minimize the blocking probability. Note
that, by activating more VNF instances in the network, the
network operator can serve more traffic, but (since activating
an instance of a VNF imposes additional cost on network
operators in terms of hardware resources, required licenses
for softwares and power consumption among others) at the
same time will face an increase in OpEx. Hence an appropriate
trade-off must be investigated.

Considering specific features of a metro network in terms of
latency, type of services requested by users, changing traffic
load, number of users and services requested by users, net-
work operators need efficient algorithms for VNF placement
able to provision SCs dynamically based on current network
condition. Most of existing studies on service chaining deal
with static provisioning of SCs while the dynamic service
chaining problem has received little attention so far [3] [4].
In this paper we provide an algorithm for dynamic VNF
placement for SC provisioning in a metro network where at
each time instant a number of users, request a specific SC
and based on the current condition of the network VNFs are
placed on NFV-nodes in a way that, with minimum possible
number of provisioned VNFs, the blocking probability is
minimized. The algorithm performs VNF placement in such a
way that the bandwidth requirements of links, computational
requirements of the NFV-nodes and latency requirements of
requested SC are satisfied and wavelength continuity at each
node is enforced. Moreover, by provisioning different SCs in
the same wavelength, grooming is done to exploit maximum
capacity of the network. Our algorithm is able to balance
the trade-off between minimizing latency violation, decreasing
blocking probability and reducing OpEx.

The remainder of this paper is organized as follows. Section
II provides a brief overview of the related works. Section
III, describes the metro network architecture and topology
considered in this paper. The proposed heuristic algorithm is

978-3-903176-07-2 c© 2018 IFIP

136 Regular papers ONDM 2018

presented in Section IV. Numerical results are presented in
Section V. Finally, conclusion is discussed in Section VI.

II. RELATED WORK

The problem of VNF placement and traffic routing for SC
provisioning has been subject of intense investigation in the
last years, especially in static settings. For static SC provision-
ing, most studies propose an integer linear programming (ILP)
model to obtain the optimal solution. For example authors
in [5] dealt for the first time with a formal modeling of
service chaining problem, and defined it as a Mixed Integer
Quadratically Constrained Program (MIQCP) which finds the
placement of VNFs and chains them together considering
resource limitation of the network. Authors in [6] design a
dynamic programming algorithm to jointly place VNFs and
route traffic between them. They divide the problem in smaller
subproblems and solve them sequentially [7]. Also some
heuristic algorithms for VNF placement have been already
proposed, as in [8]. However, in all the above-mentioned
works, provisioning of SCs is performed under a static traffic
assumption.

Dynamic placement of VNFs is addressed in a very limited
set of works. In [1] the dynamicity is accounted by consid-
ering that type, number and location of VNFs traversed by
a given user’s data flow may change in time. So a traffic-
conditioning function is proposed which, based on Service
Level Agreement (SLA) of each user, decides the type of
traffic conditioning function (shaping or priority scheduling)
suitable for a given user’s data flow. Authors of [9] provide
an online algorithm for VNF scaling to dynamically provision
network services in a datacenter network. In [10] a Mixed
Integer Programming formulation and a heuristic algorithm are
provided to dynamically provision SC, again in a datacenter
network, where an appropriate resource management is done
based on number of users requesting SCs. The authors of [3]
consider dynamic SC provisioning for two types of users in the
network, new users and existing users that can change location
in the network and change their requested SC. So, they propose
at first an ILP model for service provisioning with the objective
to maximize the profit of the service provider; then, to reduce
time complexity, they provide a more scalable model based on
column generation [4]. However, no existing work provides
an algorithm for dynamic SC provisioning in a metro network
capable of addressing the trade-off between QoS requirements
of services, blocking probability and CapEx and OpEx of
telecom operators, as the one provided in this paper.

III. METRO NETWORK ARCHITECTURE AND BACKGROUND
ON SERVICE CHAIN PROVISIONING

The topology that we considered in this paper is a 4-
level hierarchical metro aggregation network that connects
cell sites (to which users are connected) to Central Offices
(COs). Access COs provides the connectivity between cell
sites connected to them and Core CO through Main COs.
In this network optical transparent switches are used which
impose wavelength continuity. As it is shown in Fig. 1 a SC

can be considered as a chain of VNFs that are virtual nodes,
chained together using virtual links (i.e. connections between
nodes along the SC) forming SC’s path [11].

To perform service chaining the VNFs need to be placed
on NFV-nodes and virtual links need to be mapped to (a set
of) physical links. Each SC is also characterized by source
of the SC request, which in our topology is a cell site, and
destination of SC request, which for the SC shown in Fig 1
is Core CO.

Access
 CO

Main
 CO

Cell
Site

Src

Core
 CO

VNF1 VNF2 VNF3 Dst

Access
 Node

Fig. 1: Network topology.

To verify if latency requirements of SCs are satisfied, we
model latency contributions as follows: i) context switching
delay [12], that arises when a CPU is shared among multiple
VMs and a delay is incurred for loading or saving the state of
VMs. For each node n in NFV-nodes of SC (n ∈ NFVSC),
we consider a fixed value for context switching delay (DVn)
[13]; ii) propagation delay for each link l (DPl) in SC’s
path (PathSC); iii) Forward Error Correction (FEC) delay for
(de)encoding optical signal in intermediate NFV-nodes of a
SC; iv) optical-electrical-optical (OEO) conversion delay in
intermediate NFV-nodes of a SC [14]. Overall, the end-to-end
latency for a SC can be calculated as follows:

DSC =
∑

n∈NFVSC

(DVn +OEOn + FECn) +
∑

l∈PathSC

DPl

IV. DYNAMIC VNF PLACEMENT ALGORITHM

In this section we describe the proposed dynamic algorithm,
named Dynamic VNF Placement (DVNFP), that finds the
placement for VNFs of a SC and route traffic between them
at each time instant considering current state of the network.

A. Problem Statement

The problem can be stated, in a summarized form, as fol-
lows. We are given a hierarchical optical aggregation network
which is composed of COs connected together using Wave-
length Division Multiplexing (WDM) links. In this network,
SC requests are dynamically generated by users (source of
request) and they are generated in cell sites and terminated
in a CO (destination of request) depending on the type of
SC. Upon the arrival of a SC request, we need to decide the
placement of its VNFs on NFV-nodes with the objective of

ONDM 2018 137

minimizing the number of activated VNF instances as well as
blocking probability, constrained by maximum link capacity,
maximum node computational capacity and maximum tolera-
ble SC latency.

A SC request is characterized by a given holding time
and number of users requesting that specific SC. In addition,
each SC requires a specific amount of bandwidth and has a
maximum tolerated latency. Furthermore, for any SC, the cor-
responding VNFs require a specific amount of computational
capacity in terms of fraction of CPU core usage per user.

B. Algorithm

In order to provision a SC we need to place all of its VNFs
on NFV-nodes and route traffic between them. DVNFP first
builds an auxiliary graph of network with all the nodes and
links with their wavelengths. It takes as input a SC request
which is specified by these properties:

• src: source of the SC request
• dst: destination of the SC request
• Nvnf : number of VNFs composing the SC
• Fsc: type of VNFs composing the SC
• Nu: number of users requesting the SC
• Lsc: latency requirements of the SC
• Htime: holding time of the SC
The pseudocode related to the placement of VNFs is shown

in Algorithm1. The main steps of DVNFP for VNF placement
can be defined as follows:

• Reusing active VNFs: Since activating an instance of
a VNF imposes additional cost on network operators,
when a SC request arrives, DVNFP tries to reuse already
activated VNF instances in the network as much as
possible. Therefore, as it is shown in Algorithm 1 line 4,
for each VNF, DVNFP first checks if there is an already
activated VNF instance of the same type in the network
or not.

• Selecting among active VNFs: As it is shown in Al-
gorithm 1 lines 5-21, if more than one VNF instance
with enough capacity is already activated in the network,
DVNFP uses a metric called “locality-awareness”. This
metric is obtained by summing up the length of the short-
est path between source of SC request and the selected
NFV-node, and the shortest path between that node and
destination of SC request. It is worth mentioning that we
use an adaptive Dijkstra algorithm to calculate the short-
est path, in which the congested links are not included in
the graph. DVNFP chooses the NFV-nodes with locality-
awareness metric lower than a predefined threshold δ
whose value can be decided based on the topology of the
network. Among these NFV-nodes, our algorithm based
on the requested SC decides which node to choose. So, if
a SC request requires large computational resources e.g.,
Cloud Gaming [15], (requirements of these services will
be quantified in Section VI) then the NFV-nodes closer
to the Core CO, which are more likely to have large
computational capacity are chosen. However, if the SC

has stringent latency requirements (e.g. as happens for
Smart Factory), DVNFP tries to serve that SC locally,
using as NFV-nodes access COs or at least CO in lower
level of the metro hierarchy. When the best NFV-node is
found the VNF is placed on that node by allocating the
required computational capacity.

• Activating new VNF instance: If no VNF instances of a
certain VNF are already activated in the network, DVNFP
tries to instantiate a new one. As it is shown in Algo-
rithm 1 lines 22-30 at first it calculates the shortest path
between source and destination of the SC request. Then
it tries to place the VNF on the closest NFV-node to the
source along the shortest path with enough computational
capacity. If the VNF cannot be placed on any of NFV-
nodes along the shortest path, the algorithm checks the
capacity of all other NFV-nodes on the network and
tries to place the VNF on the node with better locality-
awareness and higher betweenness centrality (defined as
number of shortest path passing through this node).

Note that, at each step, source of SC request is replaced by
the NFV-node chosen to host a VNF at previous step and the
above-mentioned procedures are repeated until all the VNFs
of a SC are placed.

The pseudocode of QoS improvement is shown in Algo-
rithm 2. When all the VNFs are placed, as it is shown in
Algorithm 2 line 2, algorithm checks if latency requirement
of the SC is satisfied. If it is the case, the SC is provisioned
and when its holding time expires the resources used by this
SC (link capacity and computational capacity of NFV-nodes)
are released. These steps are shown in Algorithm 2 lines 3-
6. If the VNF placement does not allow to meet latency
requirements, algorithm calculates the latency of all virtual
links and finds the one with the highest value of latency. After
that, the resources on the endpoints of this virtual link are
released and their VNFs are placed on their adjacent virtual
nodes (if they have enough computational capacity). Then the
shortest path between these new endpoints is calculated and
is replaced with that virtual link with the highest latency. This
procedure is referred to as VNFs grouping and is shown in
Algorithm 2 lines 8-17. In Fig. 2 we demonstrate how grouping
of VNFs is done. In this example the virtual link between
VNF2 and VNF3 is the one which has the highest value of
latency. Therefore, we need to release computational resources
allocated to VNF2 on node 3 and to VNF 3 on node 6 and
place VNF2 and VNF3 on node 2 and node 7 respectively.
When the VNFs are placed on the new NFV-nodes the required
computational resources on those nodes are allocated to these
VNFs and the shortest path between these two NFV-nodes
is calculated. Then the calculated shortest path is calculated
and considered as the new virtual link connecting VNF2 and
VNF3 instances. DVNFP repeats the same procedure until
either latency requirement of the SC is satisfied, or all the
VNFs are consolidated.

138 Regular papers ONDM 2018

Algorithm 1 Placement of Virtual Network Functions

1: Given: Service Chain request
Req(src, dst,Nvnf , Nu, Fsc, Lsc, Htime), actual network
state Nstate

2: * Phase I *\
3: repeat
4: if ∃ instance of VNF already placed then
5: Select all the VNF instances.
6: Sort NFV-nodes f ∈ Fli where VNF instances

are hosted by increasing value of locf and
select only the VNF instances which satisfies:

locf − length(sp) < δ.
7: if ∃ more than one such VNF instance then
8: Choose the node with less activated VNF

instances.
9: if ∃ more than one such NFV-node then

10: if SC requires computational capacity then
11: Choose the NFV-node closer to

Core CO.
12: else
13: Choose the NFV-node closer to src.
14: end if
15: end if
16: end if
17: Try to scale up the VNF instance in the selected

NFV-nodes until success or all NFV-nodes have
been tried.

18: if success then
19: update Nstate

20: continue
21: end if
22: else * Find an NFV-nodes with enough capacity and

place VNF *\
23: Select in order the NFV-nodes on the shortest path

between src and dst of the SCs.
24: Sort the NFV-nodes by increasing number of active

VNFs on nodes.
25: Try placing the VNF instance on an NFV-node

until all the NFV-nodes on the shortest path have
been tried.

26: if failed then
27: Select the NFV-node on the network with better

locf and higher betweenness centrality.
28: Try placing the VNF instance on an NFV-node

until all the NFV-nodes have been tried.
29: if failed then
30: return SC request blocked due to capacity
31: else
32: Update Nstate

33: end if
34: else
35: Update Nstate

36: end if
37: end if
38: until All the VNFs of the SC request are chained

Algorithm 2 QoS Improvement

1: * Phase II *\
2: Check end-to-end latency of the embedded SC against

requirement.
3: if success then
4: Provision SC request.
5: Release the resources when Htime expires.
6: return SC request provisioned
7: else
8: repeat
9: Select the virtual link with highest latency.

10: Release the resources of the VNFs on its
end-points.

11: Find the two closest nodes to two end-points on
SC virtual path with enough capacity.

12: if Such node not found then
13: return blocked SC request due to latency.
14: else
15: Enable those VNFs on these two nodes
16: Add virtual link between those two nodes to

SC virtual path.
17: end if
18: if End-to-end latency is satisfied then
19: Provision SC request.
20: Release the resources when Htime expires.
21: return SC request provisioned.
22: else if Consolidated all virtual links and latency

not satisfied then
23: return blocked SC request due to latency.
24: Release all the resources provisioned earlier.
25: Update Nstate.
26: end if
27: until Latency satisfied or all VNFs have been

consolidated
28: end if

C. Benchmark Algorithms

We considered two benchmark algorithms to evaluate the
performance of DVNFP which are as follows:

• Centralized service chaining: In this approach we place
all the VNFs in the node with highest computational
capacity (Core CO in our topology) and we serve all the
SCs using the VNF instances on that node.

• Distributed service chaining: In this approach we enable
VNF instances on all the NFV-nodes whenever they
are needed. In other words, even if there is already an
activated instance of a VNF in the network, the algorithm
enables a new instance on NFV-nodes along the shortest
path between source and destination of the SC request.
Algorithm repeats the same steps till all the VNFs are
placed. If length of shortest path is less than number of
VNFs that are needed to be placed to provision the SC,
algorithm tries to put rest of VNFs on destination.

ONDM 2018 139

VNF1 VNF2 VNF3 VNF4

53 76

Src Dst

Data
Center

VNF3VNF2 VNF4

 2

VNF1

4
Core
CO

Virtual Link

Physical Link

VNF1 VNF2 VNF3 VNF4

53 76

Src Dst

VNF3VNF2
VNF4

21

VNF1

4

Virtual Link

Physical Link

8 9 10 Data
Center

Core
CO

1

Fig. 2: VNF Grouping

V. ILLUSTRATIVE NUMERICAL RESULTS

In this section we compare the performance of DVNFP vs.
the two benchmark cases, centralized service chaining and
distributed service chaining. We use three performance metrics
for comparison; blocking probability, which is calculated con-
sidering number of SC requests served out of total number of
SC requests during the simulation, average number of active
NFV-nodes, which is calculated considering number of NFV-
nodes that have at least one running VNF instance at each
time instant, and latency violation ratio which shows number
of SC requests that violated latency requirements out of total
SC requests.

Network modeling : We considered a topology similar to
that shown in Fig.1 in which we have 80 nodes, 15 of which
are NFV-nodes while the remaining nodes are forwarding
nodes. The topology has 170 WDM links each supporting
16 wavelengths with 40 Gbit/s capacity. At each node wave-
length continuity is enforced (we consider an optical network
substrate), unless the node hosts a VNF, in which case,
the intermediate virtual link is terminated and wavelength
conversion is admissible. We assumed that for each SC request
source is chosen randomly among cell sites while destination
can be either Core CO or one of NFV-nodes based on the
requested service type. Each NFV-node is equipped with 512
CPU cores, whereas the Core CO is assumed to have unlimited
computational capacity.

Traffic/SC modeling: We conducted our simulative experi-
ments using a C++ discrete-event driven simulator, that gen-
erates SC-requests as input traffic according to a Poisson-
distribution of inter-arrival rates and negative-exponential dis-
tribution of the holding times (with average duration equal to
one). All the plotted results have been obtained guaranteeing
95% statistical confidence and at most 5% confidence interval.
We considered 6 different SC types as illustrated in Table I
with different bandwidth and latency requirements [11] [15]–

[18]. The VNFs are Network Address Translation (NAT),
Firewall (FW), Traffic Monitor (TM), WAN Optimizer (WO),
Video Optimization Controller (VOC), Intrusion Detection
and Prevention System (IDPS). Each VNF requires specific
amount of CPU resources per user. Table II illustrates the
required amount of CPU (in terms of percentage of CPU per
user) for each VNF [19]–[21].

TABLE I: Service Chains With Corresponding VNFs, Bandwidth and Latency
Characteristics

Service Chain Service Chain VNFs Bandwidth Latency
Cloud Gaming NAT-FW-VOC-WO-IDPS 4 Mbps 80 ms

Augmented Reality NAT-FW-TM-VOC-IDPS 100 Mbps 1 ms
VoIP NAT-FW-TM-FW-NAT 64 Kbps 100 ms

Video Streaming NAT-FW-TM-VOC-IDPS 4 Mbps 100 ms
MIoT NAT-FW-IDPS 100 Mbps 5 ms

Smart Factory NAT-FW 100 Mbps 1 ms

TABLE II: CPU Core Usage for VNFs

VNF Name CPU Core Per User
NAT 0.00092
FW 0.0009

VOC 0.0054
TM 0.0133
WO 0.0054

IDPS 0.0107

A. Comparison Between Algorithms

We compare the three algorithms for increasing traffic load
values. Fig 3(a) shows the blocking probability increase for
increasing load in the network. We notice how blocking prob-
ability for DVNFP always lies in between blocking probability
of two benchmark algorithms i.e. centralized and distributed,
returning, for most cases, and especially for higher loads,
results very similar to the distributed case. This observation is
very promising, as it confirms that our algorithm guarantees
a blocking close to the blocking lower bound (i.e, the one re-
turned by a completely distributed service chaining approach).
Fig 3 (b) plots the average number of active NFV-nodes. In this
case we can see that DVNFP uses up to 50% less NFV-nodes
in comparison with distributed for provisioning SC requests
(even though the blocking probability is almost the same).
In other words, as activating NFV-nodes imposes additional
costs, using DVNFP telecom operators are able to almost
halve the SC provisioning costs. Finally in Fig 3 (c), it is
interesting to note that, although DVNFP requires to activate
less NFV nodes, it still provides lower violation of QoS (i.e.,
latency) requirements in comparison to the distributed case.
This is due to the fact that DVNFP performs VNF grouping
whenever latency requirements of a provisioned SC is not
satisfied. Moreover, less latency violations can be observed
with respect to the centralized scenario, as DVNFP is able to
choose NFV-nodes based on the requirements of SC (i.e. nodes
closer to the source for latency sensitive SCs are chosen).

VI. CONCLUSION

We proposed an algorithm for dynamic placement of VNFs
in the network which reduces operation costs in metro by con-
solidating VNFs as much as possible in network nodes, while

140 Regular papers ONDM 2018

30 40 50 60 70

10−4

10−3

10−2

10−1

100

Traffic Load (Erlangs)

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Centralized
DVNFP

Distributed

(a) Blocking probability

30 40 50 60 70
0

10

20

Traffic Load (Erlangs)

Av
g

nr
of

ac
tiv

e
N

F
V-

no
de

s

Centralized

DVNFP

Distributed

(b) Average number of active NFV-nodes

30 40 50 60 70
0%

10%

20%

30%

40%

Traffic Load (Erlangs)

La
te

nc
y

Vi
ol

at
io

n

Centralized

DVNFP

Distributed

(c) Latency violation

Fig. 3: Simulation results
maintaining a low blocking probability. Simulation results
show that DVNFP algorithm can balance the trade-off among
three different metrics (blocking probability, average number
of active NFV-nodes and latency violation) outperforming
completely centralized or distributed solutions. In this paper
we considered a fixed value for the context switching delay.
However, in future work we will provide additional analysis
considering that context switching delay may vary according
to the number of VNFs activated in a node, and to the amount
of traffic processed by each VNF. As resiliency is one of
the challenges that network operators face while deploying
virtualized services (i.e, service chains) future steps will focus
in extending this work to provide protection against link and or
node failures for dynamic VNF placement based on reliability
targets defined for each service.

VII. ACKNOWLEDGEMENT

The work leading to these results has been supported by
the European Community under grant agreement no. 761727

Metro-Haul project funding.

REFERENCES

[1] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Dynamic
chaining of virtual network functions in cloud-based edge networks,” in
Network Softwarization (NetSoft), 2015 1st IEEE Conference on. IEEE,
2015, pp. 1–5.

[2] L. Qu, C. Assi, K. Shaban, and M. Khabbaz, “Reliability-aware ser-
vice provisioning in NFV-enabled enterprise datacenter networks,” in
Network and Service Management (CNSM), 2016 12th International
Conference on. IEEE, 2016, pp. 153–159.

[3] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function
chain deployment and readjustment,” IEEE Transactions on Network and
Service Management, 2017.

[4] J.-J. Pedreno-Manresa, P. S. Khodashenas, M. S. Siddiqui, and P. Pavon-
Marino, “On the need of joint bandwidth and NFV resource orchestra-
tion: A realistic 5G access network use case,” IEEE Communications
Letters, vol. 22, no. 1, pp. 145–148, 2018.

[5] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on. IEEE, 2014, pp. 7–13.

[6] C. Ghribi, M. Mechtri, and D. Zeghlache, “A dynamic programming
algorithm for joint VNF placement and chaining,” Proceedings of the
2016 ACM Workshop on Cloud-Assisted Networking, pp. 19–24, 2016.

[7] A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, “Service chain
(SC) mapping with multiple SC instances in a Wide Area Network,”
arXiv preprint arXiv:1704.06716, 2017.

[8] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2015, pp. 1346–1354.

[9] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau, “Online VNF
scaling in datacenters,” in Cloud Computing (CLOUD), 2016 IEEE 9th
International Conference on. IEEE, 2016, pp. 140–147.

[10] A. Leivadeas, M. Falkner, I. Lambadaris, and G. Kesidis, “Resource
management and orchestration for a dynamic service chain steering
model,” in Global Communications Conference (GLOBECOM), 2016
IEEE. IEEE, 2016, pp. 1–6.

[11] A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, and A. Pattavina,
“Protection strategies for virtual network functions placement and ser-
vice chains provisioning,” IEEE International Workshop on Resilient
Networks Design and Modeling (RNDM), 2016.

[12] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in Network
Function Virtualization and Software Defined Network (NFV-SDN), 2015
IEEE Conference on. IEEE, 2015, pp. 191–197.

[13] F. M. David, J. C. Carlyle, and R. H. Campbell, “Context switch
overheads for linux on ARM platforms,” in Proceedings of the 2007
workshop on Experimental computer science. ACM, 2007, p. 3.

[14] V. Bobrovs, S. Spolitis, and G. Ivanovs, “Latency causes and reduction
in optical metro networks,” in Optical Metro Networks and Short-Haul
Systems VI, vol. 9008. International Society for Optics and Photonics,
2014, p. 90080C.

[15] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm
in cloud gaming: A measurement study on cloud to end-user latency,”
in Proceedings of the 11th annual workshop on network and systems
support for games. IEEE Press, 2012, p. 2.

[16] G. Xiong, P. Sun, Y. Hu, J. Lan, and K. Li, “An optimized deploy-
ment mechanism for virtual middleboxes in NFV-and SDN-Enabling
Network.” TIIS, vol. 10, no. 8, pp. 3474–3497, 2016.

[17] C. Westphal, “Challenges in networking to support augmented reality
and virtual reality.” ICNC, 2017.

[18] The Metro-Haul project deliverables. [Online]. Available: https://metro-
haul.eu/deliverables/

[19] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in Network and Service Management
(CNSM), 2015 11th International Conference on. IEEE, 2015, pp.
50–56.

[20] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in Network
Function Virtualization and Software Defined Network (NFV-SDN), 2015
IEEE Conference on. IEEE, 2015, pp. 191–197.

[21] A. Gupta. (2016) On service chaining using virtual
network functions in operator networks. [Online]. Available:
http://networks.cs.ucdavis.edu/presentation2016/Gupta-07-29-2016.pdf

ONDM 2018 141

